# Detects anomalies in a time series using S-H-ESD.
#
# Args:
# data: Time series to perform anomaly detection on.
# k: Maximum number of anomalies that S-H-ESD will detect as a percentage of the data.
# alpha: The level of statistical significance with which to accept or reject anomalies.
# num_obs_per_period: Defines the number of observations in a single period,
# and used during seasonal decomposition.
# use_decomp: Use seasonal decomposition during anomaly detection.
# use_esd: Uses regular ESD instead of hybrid-ESD. Note hybrid-ESD is more
# statistically robust.
# one_tail: If TRUE only positive or negative going anomalies are detected
# depending on if upper_tail is TRUE or FALSE.
# upper_tail: If TRUE and one_tail is also TRUE, detect only positive going
# (right-tailed) anomalies. If FALSE and one_tail is TRUE, only
# detect negative (left-tailed) anomalies.
# verbose: Additionally printing for debugging.
# Returns:
# A list containing the anomalies (anoms) and decomposition components (stl).
detect_anoms <- function(data, k = 0.49, alpha = 0.05, num_obs_per_period = NULL,
use_decomp = TRUE, use_esd = FALSE, one_tail = TRUE,
upper_tail = TRUE, verbose = FALSE) {
if (is.null(num_obs_per_period)) {
stop("must supply period length for time series decomposition")
}
num_obs <- nrow(data)
# Check to make sure we have at least two periods worth of data for anomaly context
if (num_obs < num_obs_per_period * 2) {
stop("Anom detection needs at least 2 periods worth of data")
}
# Check if our timestamps are posix
posix_timestamp <- if (class(data[[1L]])[1L] == "POSIXlt") TRUE else FALSE
# Handle NAs
if (length(rle(is.na(c(NA, data[[2L]], NA)))$values) > 3) {
stop(
paste0(
"Data contains non-leading NAs. We suggest replacing NAs with ",
"interpolated values (see na.approx in Zoo package).",
collapse = "")
)
} else {
data <- stats::na.omit(data)
}
# -- Step 1: Decompose data. This returns a univarite remainder which will be
# used for anomaly detection. Optionally, we might NOT decompose.
stats::stl(
stats::ts(data[[2L]], frequency = num_obs_per_period),
s.window = "periodic",
robust = TRUE
) -> data_decomp
# Remove the seasonal component, and the median of the data to create the univariate remainder
data.frame(
timestamp = data[[1L]],
count = (data[[2L]] - data_decomp$time.series[, "seasonal"] -
stats::median(data[[2L]]))
) -> data
# Store the smoothed seasonal component, plus the trend component for use in
# determining the "expected values" option
data.frame(
timestamp = data[[1L]],
count = (as.numeric(trunc(data_decomp$time.series[, "trend"] +
data_decomp$time.series[, "seasonal"])))
) -> data_decomp
if (posix_timestamp) data_decomp <- format_timestamp(data_decomp)
# Maximum number of outliers that S-H-ESD can detect (e.g. 49% of data)
max_outliers <- trunc(num_obs * k)
if (max_outliers == 0) {
stop(paste0(
"With longterm=TRUE, AnomalyDetection splits the data into 2 week periods by default. You have ",
num_obs,
" observations in a period, which is too few. Set a higher piecewise_median_period_weeks.")
)
}
func_ma <- match.fun(stats::median)
func_sigma <- match.fun(stats::mad)
## Define values and vectors.
n <- length(data[[2L]])
if (posix_timestamp) {
R_idx <- as.POSIXlt(data[[1L]][1L:max_outliers], tz = "UTC")
} else {
R_idx <- 1L:max_outliers
}
num_anoms <- 0L
# Compute test statistic until r=max_outliers values have been
# removed from the sample.
for (i in 1L:max_outliers) {
if (verbose) message(paste(i, "/", max_outliers, "completed"))
if (one_tail) {
if (upper_tail) {
ares <- data[[2L]] - func_ma(data[[2L]])
} else {
ares <- func_ma(data[[2L]]) - data[[2L]]
}
} else {
ares <- abs(data[[2L]] - func_ma(data[[2L]]))
}
# protect against constant time series
data_sigma <- func_sigma(data[[2L]])
if (data_sigma == 0) break
ares <- ares / data_sigma
R <- max(ares)
temp_max_idx <- which(ares == R)[1L]
R_idx[i] <- data[[1L]][temp_max_idx]
data <- data[-which(data[[1L]] == R_idx[i]), ]
## Compute critical value.
if (one_tail) {
p <- 1 - alpha / (n - i + 1)
} else {
p <- 1 - alpha / (2 * (n - i + 1))
}
t <- stats::qt(p, (n - i - 1L))
lam <- t * (n - i) / sqrt((n - i - 1 + t**2) * (n - i + 1))
if (R > lam) num_anoms <- i
}
if (num_anoms > 0) {
R_idx <- R_idx[1L:num_anoms]
} else {
R_idx <- NULL
}
return(list(anoms = R_idx, stl = data_decomp))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.