normalizeAffine.MAData: Affine normalization based on non-logged data

Description Usage Arguments Author(s) See Also Examples

Description

Affine normalization based on non-logged data. For details, see normalizeAffine.RGData().

Usage

1
2
## S3 method for class 'MAData'
normalizeAffine(this, ...)

Arguments

...

Arguments passed to normalizeAffine.RGData().

Author(s)

Henrik Bengtsson (http://www.braju.com/R/).

See Also

For more information see MAData.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
  # The option 'dataset' is used to annotate plots.
  options(dataset="sma:MouseArray")

  SMA$loadData("mouse.data")
  layout <- Layout$read("MouseArray.Layout.dat", path=system.file("data-ex", package="aroma"))
  raw <- RawData(mouse.data, layout=layout)
  ma <- getSignal(raw)

  # Clone the data to get one non-normalized and one normalized data set.
  maCurveFit <- clone(ma)
  maAffine <- clone(ma)

  # Normalize the data within slides using scaled print-tip normalization.
  normalizeCurveFit(maCurveFit, groupBy="printtip", method="lowess")
  normalizeAffine(maAffine, groupBy="printtip")

  # Plot data before and after normalization.
  subplots(9, nrow=3)
  for (obj in list(ma, maCurveFit, maAffine)) {
    # Plot M vs A and M spatially for array 1.
    plot(obj)
    plotSpatial(obj)
    # Plot the densities of A for *all* arrays.
    plotDensity(obj, what="A", xlim=c(4,16))
  }

HenrikBengtsson/aroma documentation built on May 7, 2019, 12:56 a.m.