run_PCA: Dimensionality Reduction Analysis: Principal Component...

Description Usage Arguments Details Value Author(s) Examples

View source: R/Global_Ordination.R

Description

The common Dimensionality reduction method is PCA. It's suitable for non-zero sparse matrix such as metabolites' profile.

Usage

1
run_PCA(dataset=ExpressionSet, Normalize="Zscore", Group_info="Group")

Arguments

Normalize,

Character; Normalizing feature(default: normalize="none").

Group_info,

Character; the group for plot(default: "Group").

Expression,

ExpressionSet; (Required) ExpressionSet object.

Details

12/2/2021 Guangzhou China

Value

a list object: PCA score Result of PERMANOVA

Author(s)

Hua Zou

Examples

1
2
3
4
data("ExprSetRawRB")

PCA_res <- run_PCA(dataset=ExprSetRawRB, Normalize="Zscore", Group_info="Group")
PCA_res$PCA

HuaZou/MyRtools documentation built on Jan. 6, 2022, 8:56 a.m.