run_DESeq2: Differential Expression Analysis by DEseq2 Package

Description Usage Arguments Details Value Author(s) Examples

View source: R/DA_DESeq2.R

Description

DEseq2 requires the count data (a matrix of integer values) to input. The normalization method is to use the standard factor vector per feature.

Usage

1
2
3
4
5
run_DESeq2(dataset=ExpressionSet,
                  trim="none",
                  Group_info="Group",
                  Group_name=c("HC", "AA"),
                  Pvalue=0.05, Log2FC=1)

Arguments

trim,

Character; filter to apply.(default: trim="none").

Group_info,

Character; design factor(default: "Group").

Group_name,

Character; (Required) the group for comparison.

Pvalue,

Numeric; significant level(default: 0.05).

Log2FC,

Numeric; log2FoldChange(default: 1).

Expression,

ExpressionSet; (Required) ExpressionSet object.

Details

12/2/2021 Guangzhou China

Value

a list object: DESeq object DESeq results significant difference with enriched directors

Author(s)

Hua Zou

Examples

1
2
3
4
data(ExprSetRawCount)

DESeq2_res <- run_DESeq2(dataset=ExprSetRawCount, Group_info="Group", Group_name=c("HC", "AA"), Pvalue=0.05, Log2FC=1)
DESeq2_res$res

HuaZou/MyRtools documentation built on Jan. 6, 2022, 8:56 a.m.