Description Usage Arguments Details Value Author(s) Examples
DEseq2 requires the count data (a matrix of integer values) to input. The normalization method is to use the standard factor vector per feature.
1 2 3 4 5 | run_DESeq2(dataset=ExpressionSet,
trim="none",
Group_info="Group",
Group_name=c("HC", "AA"),
Pvalue=0.05, Log2FC=1)
|
trim, |
Character; filter to apply.(default: trim="none"). |
Group_info, |
Character; design factor(default: "Group"). |
Group_name, |
Character; (Required) the group for comparison. |
Pvalue, |
Numeric; significant level(default: 0.05). |
Log2FC, |
Numeric; log2FoldChange(default: 1). |
Expression, |
ExpressionSet; (Required) ExpressionSet object. |
12/2/2021 Guangzhou China
a list object: DESeq object DESeq results significant difference with enriched directors
Hua Zou
1 2 3 4 | data(ExprSetRawCount)
DESeq2_res <- run_DESeq2(dataset=ExprSetRawCount, Group_info="Group", Group_name=c("HC", "AA"), Pvalue=0.05, Log2FC=1)
DESeq2_res$res
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.