Description Usage Arguments Value Author(s) See Also Examples
TODO: Write a description
| 1 | inla.sens(inlaObj)
 | 
| inlaObj | The result from a run of  | 
TODO: This is an EXPERIMENTAL function!
Geir-Arne Fuglstad geirarne.fuglstad@gmail.com
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | ## Case 1: Simple linear regression on simulated data
  # Number of observations 
  nObs = 100
  
  # Measurement noise
  sdNoise = 0.1
  
  # Coefficients
  mu = 2
  beta = 1
  
  # Covariate
  x = runif(nObs)
  
  # Generate data
  y = mu + beta*x + rnorm(nObs)*sdNoise
  # Make some data unobserved
  nUnObs = 20
  y[(nObs-nUnObs+1):nObs] = NA
  
  # Fit the model
  mod = inla(y ~ x,
           data = list(x = x, y = y))
  
  # Calculate sensitivites
  inla.sens(mod)
  
## Case 2: Time series
  # Length of time-series
  nObs = 100
  
  # Measurement noise
  sdNoise = 0.1
  # Autoregressive process
  rho = 0.6
  sdProc = 0.1
  arP = matrix(0, nrow = nObs, ncol = 1)
  for(i in 2:nObs)
      arP[i] = rho*arP[i-1] + rnorm(1)*sdProc
  tIdx = 1:nObs
  # Coefficients
  mu = 2
  
  # Generate data
  y = mu + arP + rnorm(nObs)*sdNoise
  # Make some data unobserved
  nUnObs = 20
  y[(nObs-nUnObs+1):nObs] = NA
  idx = 1:nObs
  
  # Run INLA
  mod = inla(y ~ f(tIdx, model = "ar1"),
             data = list(y = y, tIdx = tIdx),
             control.inla = list(reordering = "metis"))
  
  # Calculate sensitivities
  inla.sens(mod)
## Case 3: Epil dataset
  data(Epil)
  my.center = function(x) (x - mean(x))
  # make centered covariates
  Epil$CTrt    = my.center(Epil$Trt)
  Epil$ClBase4 = my.center(log(Epil$Base/4))
  Epil$CV4     = my.center(Epil$V4)
  Epil$ClAge   = my.center(log(Epil$Age))
  Epil$CBT     = my.center(Epil$Trt*Epil$ClBase4)
  # Define the model
  formula = y ~ ClBase4 + CTrt + CBT+ ClAge + CV4 +
            f(Ind, model="iid") + f(rand,model="iid")
  mod = inla(formula,family="poisson", data = Epil)
 
  # Calculate sensitivities
  inla.sens(mod)
## Case 4: Spatial data
  # Number of observations
  nObs = 100
  
  # Measurement noise
  sdNoise = 0.2
  # Spatial process
  sdProc = 1.0
  rho0 = 0.2
  # Coefficients
  beta0 = 1
  beta1 = 2
  
  # Generate spatial data + measurement noise
  loc = cbind(runif(nObs), runif(nObs))
  dd = as.matrix(dist(loc))
  Sig = sdProc^2*inla.matern.cov(nu = 1, kappa = sqrt(8)/rho0, dd, corr = TRUE)
  L = t(chol(Sig))
  u = L
  
  # Generate Covariate
  x = runif(nObs)-0.5
  # Combine to observations
  y = beta0 + beta1*x + u
  
  # Number of unobserved
  nUnObs = 2
  y[1:nUnObs] = NA
  
  # Mesh
  mesh = inla.mesh.2d(loc, max.edge = 0.05, cutoff = 0.05)
  
  # Make SPDE object
  spde  = inla.spde2.matern(mesh)
  spde2 = inla.spde2.matern(mesh, constr = TRUE)
  
  # Make A matrix
  A = inla.spde.make.A(mesh, loc)
  
  # Stack
  X = cbind(1, x)
  stk = inla.stack(data = list(y = y), A = list(A, 1),
                   effects = list(field = 1:spde$n.spde,
                                  X = X))
  
  # Run INLA
  mod1 = inla(y ~ -1 + X + f(field, model = spde),
              data = inla.stack.data(stk),
              control.predictor = list(A = inla.stack.A(stk)),
              control.family = list(prior = "pcprec",
                                    param = c(3, 0.05)))
  mod2 = inla(y ~ -1 + X + f(field, model = spde2),
              data = inla.stack.data(stk),
              control.predictor = list(A = inla.stack.A(stk)),
              control.family = list(prior = "pcprec",
                                    param = c(3, 0.05)))
  # Calculate sensitivities
  res1 = inla.sens(mod1)
  res2 = inla.sens(mod2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.