#' fsMCMC MCMC for SIR Epidemic Panel Data (with blocked proposals of underlying Random Variables)
#'
#' Adapts proposal parameters for with a view of optimal of a target using forward simulation MCMC scheme.
#' @family Panel Data MCMC
#' @param obsTransData Interpanel transition data.
#' @param I_0 Initial number of infectives in the population.
#' @param obsTimes Times at which epidemic cohort were followed up.
#' @param N Population size.
#' @param beta0 Starting value for infectious process parameter.
#' @param gamma0 Starting value for removal/recovery process parameter.
#' @param lambda Starting value for RWM proposal parameter which is to be adapted.
#' @param V Starting state for RWM proposal Covariance matrix which is to be adapted.
#' @param noDraws Number of underlying variables to be drawn (i.e max. number of events in observation period)
#' @param blockSize Number of underlying random variables of the process to refresh.
#' @param noIts Number of MCMC iterations.
#' @param lagMax Plotting parameter for acf() function.
#' @param thinningFactor Controls the factor by which MCMC samples are thinned, to reduce dependency.
#'
#' @return MCMC summary.
SIR_fsMCMC_blockedIS = function(obsTransData, I_0, obsTimes, N, beta0, gamma0, lambda, V, noDraws = 2*N - I_0, blockSize, noIts,
burnIn = 0, lagMax = NA, thinningFactor = 1){
# Calculate the amount of blockSamples which need to be made
# To accomodate for a potentially different final block size (blockSamples is not integer), calculate the residual noDraws
blockSamples = ceiling(noDraws/blockSize)
indicies = lapply(X = 0:(blockSamples - 1), function(X){c(X*blockSize + 1, min((X+1)*blockSize, noDraws))})
Start = as.numeric(Sys.time())
noSampled = sum(obsTransData[[1]])
thetaCurr = c(beta0, gamma0)
logPCurr = -Inf
while(logPCurr == -Inf){
ECurr = rexp(noDraws)
UCurr = runif(noDraws)
sim = homogeneousPanelDataSIR_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
thetaCurr[2], obsTimes,
ECurr, UCurr)
panelDataSim = sim$panelData
transDataSim = transitionData(panelDataSim, states = 1:3)
logPCurr = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
}
# Create Storage Matrix
draws = matrix(NA, nrow = noIts + 1, ncol = length(thetaCurr) + 1)
draws[1,] = c(thetaCurr, logPCurr)
# Proposal Acceptance Counter
acceptTheta = 0
acceptEU = 0
print("Sampling Progress")
pb <- progress::progress_bar$new(total = noIts)
for(i in 1:noIts){
pb$tick()
# ==== Beta and Gamma Proposal ====
# Folded Normal
thetaProp = abs(thetaCurr + mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = lambda*V))
newSim = homogeneousPanelDataSIR_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaProp[1],
thetaProp[2], obsTimes, ECurr, UCurr)
transDataSim = transitionData(newSim$panelData, states = 1:3)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
logA = (logPProp + sum(dexp(thetaProp, rate = 0.001, log = T)) ) -
(logPCurr + sum(dexp(thetaCurr, rate = 0.001, log = T)) )
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
thetaCurr = thetaProp
acceptTheta = acceptTheta + 1
}
# ==== E and U proposal ====
proposalSet = sapply(X = indicies, function(X) sample(X[1]:X[2], size = 1))
EProp = ECurr
UProp = UCurr
EProp[proposalSet] = rexp(blockSamples)
UProp[proposalSet] = runif(blockSamples)
newSim = homogeneousPanelDataSIR_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
thetaCurr[2], obsTimes, EProp, UProp)
transDataSim = transitionData(newSim$panelData, states = 1:3)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
logA = (logPProp) - (logPCurr)
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
ECurr = EProp
UCurr = UProp
acceptEU = acceptEU + 1
}
# Store State
draws[i+1, ] = c(thetaCurr, logPCurr)
}
End <- as.numeric(Sys.time())
timeTaken <- End - Start
# Thin the samples
draws <- draws[seq(from = burnIn + 1, to = (noIts + 1) - burnIn, by = thinningFactor),]
# Calculate Effective Sample Sizes (and Per Second) and Acceptance Rates
ESS <- coda::effectiveSize(draws[,1:2])
ESS.sec <- ESS/timeTaken
acceptRate <- c(acceptTheta, acceptEU)/noIts
# = Plots =
par(mfrow = c(2,2))
# Plot Beta Samples and Sample Auto-Corrolation Function
if(is.na(lagMax)){
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], main = "")
} else{
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], lagMax, main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], lagMax, main = "")
}
# Calculating Summary Statistics for samples
betaSummary = c(mean(draws[,1]), sd(draws[,1]))
gammaSummary = c(mean(draws[,2]), sd(draws[,2]))
printed_output(rinf_dist = "Exp", no_proposals = NA, noIts, ESS, timeTaken, ESS.sec, acceptRate)
return(list(draws = draws, acceptRate = acceptRate, ESS = ESS, ESS.sec = ESS.sec,
betaSummary = betaSummary, gammaSummary = gammaSummary, timeTaken = timeTaken))
}
# ==== Adaptive MCMC ====
# Adapt RWM Jump Proposal Parameter \lambda and Covariance Matrix V
# Find a sufficient amount of draws
# Adapt blockSize parameter which changes the number of RVs changed
adaptiveSIRfsMCMC7_blockedIS = function(obsTransData, I_0, obsTimes, N, beta0, gamma0, thetaLim, lambda0, V,
firstRun = TRUE, noDraws = 2*N - I_0,
blockSize, noIts, burnIn = 0, lagMax = NA, thinningFactor = 1, delta){
Start = as.numeric(Sys.time())
#' Calculate the amount of blockSamples which need to be made
#' To accomodate for a potentially different final block size (blockSamples is not integer), calculate the residual noDraws
blockSamples = ceiling(noDraws/blockSize)
indicies = lapply(X = 0:(blockSamples - 1), function(X){ c(X*blockSize + 1, min((X+1)*blockSize, noDraws))})
if(missing(V)){
V = diag(c(1/N, 1))
}
if(firstRun){
lambda = 2.38/sqrt(2)
V = diag(c(1/N, 1))
} else{
lambda = lambda0
}
Vi = diag(c(1/N, 1))
noSampled = sum(obsTransData[[1]])
thetaCurr = c(beta0, gamma0)
logPCurr = -Inf
while(logPCurr == -Inf){
ECurr = rexp(noDraws)
UCurr = runif(noDraws)
sim = homogeneousPanelDataSIR_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
thetaCurr[2], obsTimes,
ECurr, UCurr)
panelDataSim = sim$panelData
transDataSim = transitionData(panelDataSim, states = 1:3)
logPCurr = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
}
#' Create Storage Matrix
draws = matrix(NA, nrow = noIts + 1, ncol = length(thetaCurr) + 1)
draws[1,] = c(thetaCurr, logPCurr)
#' Proposal Acceptance Counter
acceptTheta = 0
accProbs = c()
acceptEU = 0
print("Sampling Progress")
pb <- progress::progress_bar$new(total = noIts)
for(i in 1:noIts){
pb$tick()
# ==== Beta and Gamma Proposal ====
u1 = runif(1, 0, 1)
if(u1 > delta & acceptTheta > 10){
# save = Vi
Vi = var(draws[,1:2], na.rm = T)
# print(sum(save - Vi))
thetaProp = abs(thetaCurr + lambda*mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = Vi))
} else{
thetaProp = abs(thetaCurr + lambda0*mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = V))
}
newSim = homogeneousPanelDataSIR_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaProp[1],
thetaProp[2], obsTimes, ECurr, UCurr)
transDataSim = transitionData(newSim$panelData, states = 1:3)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
if(sum(thetaProp < thetaLim) == 2){
logA = (logPProp + sum(dexp(thetaCurr, rate = 0.001, log = T)) ) -
(logPCurr + sum(dexp(thetaProp, rate = 0.001, log = T)) )
} else{
logA = -Inf
}
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
thetaCurr = thetaProp
acceptTheta = acceptTheta + 1
if(u1 > delta){
lambda = lambda + 0.93*(lambda/(sqrt(i)))
}
} else{
if(u1 > delta){
lambda = lambda - 0.07*(lambda/(sqrt(i)))
}
}
# ==== E and U proposal ====
proposalSet = sapply(X = indicies, function(X) sample(X[1]:X[2], size = 1))
EProp = ECurr
UProp = UCurr
EProp[proposalSet] = rexp(blockSamples)
UProp[proposalSet] = runif(blockSamples)
newSim = homogeneousPanelDataSIR_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
thetaCurr[2], obsTimes, EProp, UProp)
transDataSim = transitionData(newSim$panelData, states = 1:3)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
logA = (logPProp) - (logPCurr)
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
ECurr = EProp
UCurr = UProp
acceptEU = acceptEU + 1
if(blockSize > 3){
blockSize = blockSize - 3*rbinom(1, size = 1, prob = 1/i^(0.25))
}
} else{
blockSize = blockSize + 1*rbinom(1, size = 1, prob = 1/i^(0.25))
}
#' Calculate the amount of blockSamples which need to be made
#' To accomodate for a potentially different final block size (blockSamples is not integer), calculate the residual noDraws
blockSamples = ceiling(noDraws/blockSize)
indicies = lapply(X = 0:(blockSamples - 1), function(X){c(X*blockSize + 1, min((X+1)*blockSize, noDraws))})
#' Store State
draws[i+1, ] = c(thetaCurr, logPCurr)
}
End <- as.numeric(Sys.time())
timeTaken <- End - Start
# Thin the samples
draws <- draws[seq(from = burnIn + 1, to = (noIts + 1) - burnIn, by = thinningFactor),]
# Calculate Effective Sample Sizes (and Per Second) and Acceptance Rates
ESS <- coda::effectiveSize(draws[,1:2])
ESS.sec <- ESS/timeTaken
acceptRate <- c(acceptTheta, acceptEU)/noIts
printed_output(rinf_dist = "Exp", no_proposals = NA, noIts, ESS, timeTaken, ESS.sec, acceptRate)
# = Plots =
par(mfrow = c(2,2))
# Plot Beta Samples and Sample Auto-Corrolation Function
if(is.na(lagMax)){
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], main = "")
} else{
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], lagMax, main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], lagMax, main = "")
}
#' Calculating Summary Statistics for samples
betaSummary = c(mean(draws[,1]), sd(draws[,1]))
gammaSummary = c(mean(draws[,2]), sd(draws[,2]))
return(list(draws = draws, acceptRate = acceptRate, lambda = lambda, V = Vi, blockSize = blockSize, ESS = ESS, ESS.sec = ESS.sec,
betaSummary = betaSummary, gammaSummary = gammaSummary, timeTaken = timeTaken))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.