#'
fsMCMC_SIS = function(obsTransData, obsTimes, N, beta0, gamma0, lambda, s, noIts,
burnIn = 0, lagMax = NA, thinningFactor = 1){
Start = as.numeric(Sys.time())
noSampled = sum(obsTransData[[1]])
thetaCurr = c(beta0, gamma0)
uCurr = runif()
logPCurr = -Inf
while(logPCurr == -Inf){
panelDataSim = homogeneousPanelDataSIS_Gillespie(initialState = c(rep(1, N - 1), 2), thetaCurr[1],
thetaCurr[2],
obsTimes)$panelData
transDataSim = transitionData(panelDataSim, states = 1:2)
logPCurr = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
}
#' Create Storage Matrix
draws = matrix(NA, nrow = noIts + 1, ncol = length(thetaCurr) + 1)
draws[1,] = c(thetaCurr, logPCurr)
#' Proposal Acceptance Counter
acceptTheta = 0
print("Sampling Progress")
pb <- progress::progress_bar$new(total = noIts)
for(i in 1:noIts){
pb$tick()
#' Propose new beta and gamma using Multiplicative RW propsal
logThetaCurr = log(thetaCurr)
logThetaProp = logThetaCurr + mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = lambda*diag(1, 2))
thetaProp = exp(logThetaProp)
panelDataSim = homogeneousPanelDataSIS_Gillespie(initialState = c(rep(1, N - 1), 2), thetaProp[1],
thetaProp[2], obsTimes)$panelData
transDataSim = transitionData(panelDataSim, states = 1:2)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
loga = (logPProp + sum(thetaCurr)) - (logPCurr + sum(thetaProp))
logu = log(runif(1))
if(logu < loga){
logPCurr = logPProp
thetaCurr = thetaProp
acceptTheta = acceptTheta + 1
}
#' Store State
draws[i+1, ] = c(thetaCurr, logPCurr)
}
End <- as.numeric(Sys.time())
timeTaken <- End - Start
# Thin the samples
draws <- draws[seq(from = burnIn + 1, to = (noIts + 1) - burnIn, by = thinningFactor),]
# Calculate Effective Sample Sizes (and Per Second) and Acceptance Rates
ESS <- coda::effectiveSize(draws[,1:2])
ESS.sec <- ESS/timeTaken
acceptRate <- acceptTheta/noIts
# = Plots =
par(mfrow = c(2,2))
# Plot Beta Samples and Sample Auto-Corrolation Function
if(is.na(lagMax)){
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], main = "")
# Gamma
plot(draws[, 1], type = 'l', ylab = expression(gamma))
acf(draws[, 1], main = "")
} else{
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], lagMax, main = "")
# Gamma
plot(draws[, 1], type = 'l', ylab = expression(gamma))
acf(draws[, 1], lagMax, main = "")
}
#' Calculating Summary Statistics for samples
betaSummary = c(mean(draws[,1]), sd(draws[,1]))
gammaSummary = c(mean(draws[,2]), sd(draws[,2]))
printed_output(rinf_dist = "Exp", no_proposals = NA, noIts, ESS, timeTaken, ESS.sec, acceptRate)
return(list(draws = draws, acceptRate = acceptRate, ESS = ESS, ESS.sec = ESS.sec,
betaSummary = betaSummary, gammaSummary = gammaSummary, timeTaken = timeTaken))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.