# test_that("simple examples 2", {
# # Example 1
# read_example_bam_file <- system.file("extdata", "mini_example.bam", package = "dreams")
# reference_path <- system.file("extdata", "ref.fasta", package = "dreams")
#
# bam_df <- load_BAM(read_example_bam_file)
#
# # Add genomic positions of mismatches
# mismatch_bam_df <- extract_mismatch_positions(bam_df)
#
# mismatch_positions_df <-
# extract_features_from_bam(
# bam_df = mismatch_bam_df,
# reference_path = reference_path
# )
#
# # Filter data
# filtered_mismatch_positions_df <-
# filter_mismatch_positions(
# read_positions = mismatch_positions_df,
# bam_file = read_example_bam_file,
# mm_rate_max = 0.49,
# bed_include_path = NULL
# )
# })
#
#
# test_that("Individual example", {
# read_example_bam_file <- system.file("extdata", "mini_example.bam", package = "dreams")
# reference_path <- system.file("extdata", "ref.fasta", package = "dreams")
# bed_file_3 <- system.file("extdata", "bed_cov3.bed", package = "dreams")
#
# bam_df <- load_BAM(read_example_bam_file)
#
#
# # Add genomic positions of mismatches
# mismatch_bam_df <- extract_mismatch_positions(bam_df)
#
# # Add features
# mismatch_positions_df <-
# extract_features_from_bam(
# bam_df = mismatch_bam_df,
# reference_path = reference_path
# )
#
# filtered_mismatch_positions_df <-
# filter_mismatch_positions(
# read_positions = mismatch_positions_df,
# bam_file = read_example_bam_file,
# mm_rate_max = 1,
# bed_include_path = bed_file_3
# )
#
# n_samples <- nrow(filtered_mismatch_positions_df$data) * 1
#
# # Generate negative samples
# negative_read_positions_df <-
# sample_negative_read_positions(
# bam_df = bam_df,
# n_samples = n_samples
# )
#
# # Add features
# negative_samples <-
# extract_features_from_bam(
# bam_df = negative_read_positions_df,
# reference_path = reference_path
# )
# })
#
test_that("full example - get_training_data_from_bam", {
read_example_bam_file <- system.file("extdata", "mini_example.bam", package = "dreams")
reference_path <- system.file("extdata", "ref.fasta", package = "dreams")
n_errors <- 1
factor <- 1
samples_1 <- get_training_data_from_bam(
bam_path = read_example_bam_file,
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51
)
expect_true(nrow(samples_1$data) == n_errors + n_errors * factor)
n_errors <- 1
factor <- 10
samples_2 <- get_training_data_from_bam(
bam_path = read_example_bam_file,
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51
)
expect_true(nrow(samples_2$data) == n_errors + n_errors * factor)
n_errors <- 1
factor <- 1
positions_to_exclude_paths <- c(system.file("extdata", "positions_to_exclude_1.csv", package = "dreams"))
samples_3 <- get_training_data_from_bam(
bam_path = read_example_bam_file,
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51,
positions_to_exclude_paths = positions_to_exclude_paths
)
n_errors <- 1
factor <- 1
positions_to_exclude_paths_4 <- c(system.file("extdata", "positions_to_exclude_2.csv", package = "dreams"))
samples_4 <- get_training_data_from_bam(
bam_path = read_example_bam_file,
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51,
positions_to_exclude_paths = positions_to_exclude_paths_4
)
})
test_that("pileup example", {
# Example 1
read_example_bam_file <- system.file("extdata", "mini_example.bam", package = "dreams")
Rsamtools::pileup(read_example_bam_file)
pp <- Rsamtools::PileupParam(
max_depth = 250, min_base_quality = 13, min_mapq = 0,
min_nucleotide_depth = 1, min_minor_allele_depth = 0,
distinguish_strands = FALSE, distinguish_nucleotides = FALSE,
ignore_query_Ns = TRUE, include_deletions = TRUE, include_insertions = FALSE,
left_bins = NULL, query_bins = NULL, cycle_bins = NULL
)
coverage_all <- Rsamtools::pileup(read_example_bam_file, pileupParam = pp)
expect_true(nrow(coverage_all) == 11)
ranges_NULL <- bed_to_granges(NULL)
coverage_NULL <- Rsamtools::pileup(read_example_bam_file, pileupParam = pp, scanBamParam = ScanBamParam(which = ranges_NULL))
# FILTER WITH BED
bed_file_0 <- system.file("extdata", "bed_cov0.bed", package = "dreams")
bed_file_1 <- system.file("extdata", "bed_cov1.bed", package = "dreams")
bed_file_2 <- system.file("extdata", "bed_cov2.bed", package = "dreams")
bed_file_3 <- system.file("extdata", "bed_cov2.bed", package = "dreams")
ranges_0 <- bed_to_granges(bed_file_0)
coverage_0 <- Rsamtools::pileup(read_example_bam_file, pileupParam = pp, scanBamParam = ScanBamParam(which = ranges_0))
ranges_1 <- bed_to_granges(bed_file_1)
coverage_1 <- Rsamtools::pileup(read_example_bam_file, pileupParam = pp, scanBamParam = ScanBamParam(which = ranges_1))
expect_true(coverage_1$count == 1)
ranges_2 <- bed_to_granges(bed_file_2)
coverage_2 <- Rsamtools::pileup(read_example_bam_file, pileupParam = pp, scanBamParam = ScanBamParam(which = ranges_2))
expect_true(coverage_2$count == 2)
ranges_3 <- bed_to_granges(bed_file_3)
coverage_3 <- Rsamtools::pileup(read_example_bam_file, pileupParam = pp, scanBamParam = ScanBamParam(which = ranges_3))
expect_true(coverage_3$count == 2)
})
test_that("full example - get_training_data_from_bam", {
read_example_bam_file <- system.file("extdata", "mini_example.bam", package = "dreams")
reference_path <- system.file("extdata", "ref.fasta", package = "dreams")
factor <- 1
# Basic
samples_1 <- get_training_data(
bam_paths = read_example_bam_file,
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51
)
samples_2 <- get_training_data(
bam_paths = c(read_example_bam_file, read_example_bam_file),
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51
)
# Personal positions to exclude
positions_to_exclude_paths <- c(
system.file("extdata", "positions_to_exclude_1.csv", package = "dreams"),
system.file("extdata", "positions_to_exclude_1.csv", package = "dreams"),
system.file("extdata", "positions_to_exclude_2.csv", package = "dreams"),
system.file("extdata", "positions_to_exclude_2.csv", package = "dreams")
)
samples_3 <- get_training_data(
bam_paths = c(read_example_bam_file, read_example_bam_file, read_example_bam_file, read_example_bam_file),
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51,
positions_to_exclude_paths = positions_to_exclude_paths
)
common_positions_to_exclude_paths <- c(system.file("extdata", "positions_to_exclude_1.csv", package = "dreams"))
positions_to_exclude_paths <- c(
system.file("extdata", "positions_to_exclude_2.csv", package = "dreams"),
system.file("extdata", "positions_to_exclude_2.csv", package = "dreams")
)
samples_3 <- get_training_data(
bam_paths = c(read_example_bam_file, read_example_bam_file),
reference_path = reference_path,
bed_include_path = NULL,
factor = factor,
mm_rate_max = 0.51,
positions_to_exclude_paths = positions_to_exclude_paths,
common_positions_to_exclude_paths = common_positions_to_exclude_paths
)
common_positions_to_exclude_paths <- c(system.file("extdata", "positions_to_exclude_2.csv", package = "dreams"))
positions_to_exclude_paths <- c(
system.file("extdata", "positions_to_exclude_2.csv", package = "dreams"),
system.file("extdata", "positions_to_exclude_1.csv", package = "dreams")
)
bed_include_path <- system.file("extdata", "bed_cov3.bed", package = "dreams")
samples_4 <- get_training_data(
bam_paths = c(read_example_bam_file, read_example_bam_file),
reference_path = reference_path,
bed_include_path = bed_include_path,
factor = factor,
mm_rate_max = 0.51,
positions_to_exclude_paths = positions_to_exclude_paths,
common_positions_to_exclude_paths = common_positions_to_exclude_paths
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.