#' Markov Chain Monte Carlo (MCMC) for time-varying parameter models with shrinkage
#'
#' \code{shrinkTVP} samples from the joint posterior distribution of the parameters of a time-varying
#' parameter model with shrinkage, potentially including stochastic volatility (SV), and returns the MCMC draws.
#'
#' For details concerning the algorithm please refer to the paper by Bitto and Frühwirth-Schnatter (2019).
#'
#' @param formula object of class "formula": a symbolic representation of the model, as in the
#' function \code{lm}. For details, see \code{\link{formula}}.
#' @param data \emph{optional} data frame containing the response variable and the covariates. If not found in \code{data},
#' the variables are taken from \code{environment(formula)}, typically the environment from which \code{shrinkTVP}
#' is called. No \code{NA}s are allowed in the response variable and the covariates.
#' @param niter positive integer, indicating the number of MCMC iterations
#' to perform, including the burn-in. Has to be larger than or equal to \code{nburn} + 2. The default value is 10000.
#' @param nburn non-negative integer, indicating the number of iterations discarded
#' as burn-in. Has to be smaller than or equal to \code{niter} - 2. The default value is \code{round(niter / 2)}.
#' @param nthin positive integer, indicating the degree of thinning to be performed. Every \code{nthin} draw is kept and returned.
#' The default value is 1, implying that every draw is kept.
#' @param learn_a_xi logical value indicating whether to learn a_xi, the local adaptation parameter of the state variances.
#' The default value is \code{TRUE}.
#' @param learn_a_tau logical value indicating whether to learn a_tau, the local adaptation parameter of the mean of the
#' initial values of the states. The default value is \code{TRUE}.
#' @param a_xi positive, real number, indicating the (fixed) value for a_xi. Ignored if
#' \code{learn_a_xi} is \code{TRUE}. The default value is 0.1.
#' @param a_tau positive, real number, indicating the (fixed) value for a_tau. Ignored if
#' \code{learn_a_tau} is \code{TRUE}. The default value is 0.1.
#' @param learn_kappa2 logical value indicating whether to learn kappa2, the global level of shrinkage for
#' the state variances. The default value is \code{TRUE}.
#' @param learn_lambda2 logical value indicating whether to learn the lambda^2 parameter,
#' the global level of shrinkage for the mean of the initial values of the states. The default value is \code{TRUE}.
#' @param kappa2 positive, real number, indicating the (fixed) value for kappa2. Ignored if
#' \code{learn_kappa2} is \code{TRUE}. The default value is 20.
#' @param lambda2 positive, real number, indicating the (fixed) value for lambda2. Ignored if
#' \code{learn_lambda2} is \code{TRUE}. The default value is 20.
#' @param hyperprior_param \emph{optional} named list containing hyperparameter values.
#' Not all have to be supplied, with those missing being replaced by the default values.
#' Any list elements that are misnamed will be ignored and a warning will be thrown.
#' All hyperparameter values have to be positive, real numbers. The following hyperparameters can be
#' supplied:
#' \itemize{
#' \item \code{c0}: The default value is 2.5.
#' \item \code{g0}: The default value is 5.
#' \item \code{G0}: The default value is 5 / (2.5 - 1).
#' \item \code{e1}: The default value is 0.001.
#' \item \code{e2}: The default value is 0.001.
#' \item \code{d1}: The default value is 0.001.
#' \item \code{d2}: The default value is 0.001.
#' \item \code{b_xi}: The default value is 10.
#' \item \code{b_tau}: The default value is 10.
#' \item \code{nu_xi}: The default value is 5.
#' \item \code{nu_tau}: The default value is 5.
#' }
#' @param c_tuning_par_xi positive, real number. Determines the standard deviation of the proposal
#' distribution for the Metropolis Hastings step for a_xi. Ignored if \code{learn_a_xi} is \code{FALSE}. The default
#' value is 1.
#' @param c_tuning_par_tau positive, real number. Determines the standard deviation of the proposal
#' distribution for the Metropolis Hastings step for a_tau. Ignored if \code{learn_a_tau} is \code{FALSE}. The default
#' value is 1.
#' @param display_progress logical value indicating whether the progress bar and other informative output should be
#' displayed. The default value is \code{TRUE}.
#' @param ret_beta_nc logical value indicating whether to output the non-centered states in addition to the centered ones.
#' The default value is \code{FALSE}.
#' @param sv logical value indicating whether to use stochastic volatility for the error of the observation
#' equation. For details please see \code{\link{stochvol}}, in particular \code{\link{svsample}}. The default value is
#' \code{FALSE}.
#' @param sv_param \emph{optional} named list containing hyperparameter values for the stochastic volatility
#' parameters. Not all have to be supplied, with those missing being replaced by the default values.
#' Any list elements that are misnamed will be ignored and a warning will be thrown. Ignored if
#' \code{sv} is \code{FALSE}. The following elements can be supplied:
#' \itemize{
#' \item \code{Bsigma_sv}: positive, real number. The default value is 1.
#' \item \code{a0_sv}: positive, real number. The default value is 5.
#' \item \code{b0_sv}: positive, real number. The default value is 1.5.
#' \item \code{bmu}: real number. The default value is 0.
#' \item \code{Bmu}: real number. larger than 0. The default value is 1.
#' }
#'
#' @return The value returned is a list object of class \code{shrinkTVP} containing
#' \item{\code{sigma2}}{\code{mcmc} object containing the parameter draws from the posterior distribution of \code{sigma2}.
#' If \code{sv} is \code{TRUE}, \code{sigma2} is additionally an \code{mcmc.tvp} object.}
#' \item{\code{theta_sr}}{an \code{mcmc} object containing the parameter draws from the posterior distribution of the square root of theta.}
#' \item{\code{beta_mean}}{an \code{mcmc} object containing the parameter draws from the posterior distribution of beta_mean.}
#' \item{\code{beta_nc}}{\emph{(optional)} \code{list} object containing an \code{mcmc.tvp} object for the parameter draws from the posterior
#' distribution of the non-centered states, one for each covariate. In the case that there is only one covariate, this becomes just
#' a single \code{mcmc.tvp} object. Not returned if \code{ret_beta_nc} is \code{FALSE}.}
#' \item{\code{beta}}{\code{list} object containing an \code{mcmc.tvp} object for the parameter draws from the posterior distribution of the centered
#' states, one for each covariate. In the case that there is only one covariate, this becomes just a single \code{mcmc.tvp} object.}
#' \item{\code{xi2}}{\code{mcmc} object containing the parameter draws from the posterior distribution of xi2.}
#' \item{\code{a_xi}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of a_xi.
#' Not returned if \code{learn_a_xi} is \code{FALSE}.}
#' \item{\code{a_xi_acceptance}}{\emph{(optional)} \code{list} object containing acceptance statistics for the Metropolis Hastings algorithm for
#' a_xi. Not returned if \code{learn_a_xi} is \code{FALSE}.}
#' \item{\code{tau2}}{\code{mcmc} object containing the parameter draws from the posterior distribution of tau2.}
#' \item{\code{a_tau}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of a_tau.
#' Not returned if \code{learn_a_tau} is \code{FALSE}.}
#' \item{\code{a_tau_acceptance}}{\emph{(optional)} \code{list} containing acceptance statistics for the Metropolis Hastings algorithm for
#' a_tau. Not returned if \code{learn_a_tau} is \code{FALSE}.}
#' \item{\code{kappa2}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of kappa2.
#' Not returned if \code{learn_kappa2} is \code{FALSE}.}
#' \item{\code{lambda2}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of lambda2.
#' Not returned if \code{learn_lambda2} is \code{FALSE}.}
#' \item{\code{C0}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of C0.
#' Not returned if \code{sv} is \code{TRUE}.}
#' \item{\code{sv_mu}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of the mu
#' parameter for the stochastic volatility model on the errors. Not returned if \code{sv} is \code{FALSE}.}
#' \item{\code{sv_phi}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of the phi
#' parameter for the stochastic volatility model on the errors. Not returned if \code{sv} is \code{FALSE}.}
#' \item{\code{sv_sigma2}}{\emph{(optional)} \code{mcmc} object containing the parameter draws from the posterior distribution of the sigma2
#' parameter for the stochastic volatility model on the errors. Not returned if \code{sv} is \code{FALSE}.}
#' \item{\code{priorvals}}{\code{list} object containing hyperparameter values of the prior distributions, as specified by the user.}
#' \item{\code{model}}{\code{list} object containing the model matrix and model response used.}
#' \item{\code{summaries}}{\code{list} object containing a collection of summary statistics of the posterior draws.}
#' \item{\code{LPDS_comp}}{\code{list} object containg two arrays that are required for calculating the LPDS.}
#' To display the output, use \code{plot} and \code{summary}. The \code{summary} method displays the specified prior values stored in
#' \code{priorvals} and the posterior summaries stored in \code{summaries}, while the \code{plot} method calls \code{coda}'s \code{plot.mcmc}
#' or the \code{plot.mcmc.tvp} method. Furthermore, all functions that can be applied to \code{coda::mcmc} objects
#' (e.g. \code{coda::acfplot}) can be applied to all output elements that are \code{coda} compatible.
#' @author Peter Knaus \email{peter.knaus@@wu.ac.at}
#' @seealso \code{\link{plot.shrinkTVP}}, \code{\link{plot.mcmc.tvp}}
#' @references Bitto, A., & Frühwirth-Schnatter, S. (2019). "Achieving shrinkage in a time-varying parameter model framework."
#' \emph{Journal of Econometrics}, 210(1), 75-97. <doi:10.1016/j.jeconom.2018.11.006>
#' @examples
#' \donttest{
#'
#' ## Example 1, learn everything
#' set.seed(123)
#' sim <- simTVP(theta = c(0.2, 0, 0), beta_mean = c(1.5, -0.3, 0))
#' data <- sim$data
#'
#' res <- shrinkTVP(y ~ x1 + x2, data = data)
#' # summarize output
#' summary(res)
#'
#'
#' ## Example 2, hierarchical Bayesian Lasso
#' res <- shrinkTVP(y ~ x1 + x2, data = data,
#' learn_a_xi = FALSE, learn_a_tau = FALSE,
#' a_xi = 1, a_tau = 1)
#'
#'
#' ## Example 3, non-hierarchical Bayesian Lasso
#' res <- shrinkTVP(y ~ x1 + x2, data = data,
#' learn_a_xi = FALSE, learn_a_tau = FALSE,
#' a_xi = 1, a_tau = 1,
#' learn_kappa2 = FALSE, learn_lambda2 = FALSE)
#'
#'
#' ## Example 4, adding stochastic volatility
#' res <- shrinkTVP(y ~ x1 + x2, data = data,
#' sv = TRUE)
#'
#'
#' ## Example 4, changing some of the default hyperparameters
#' res <- shrinkTVP(y ~ x1 + x2, data = data,
#' hyperprior_param = list(b_xi = 5,
#' nu_xi = 10))
#' }
#'
#' @export
shrinkTVP <- function(y,
d,
niter = 10000,
nburn = round(niter / 2),
nthin = 1,
learn_a_xi = TRUE,
learn_a_tau = TRUE,
a_xi = 0.1,
a_tau = 0.1,
learn_kappa2 = TRUE,
learn_lambda2 = TRUE,
kappa2 = 20,
lambda2 = 20,
hyperprior_param,
c_tuning_par_xi = 1,
c_tuning_par_tau = 1,
display_progress = TRUE,
ret_beta_nc = FALSE,
sv = FALSE,
sv_param){
# Input checking ----------------------------------------------------------
# default hyperparameter values
default_hyper <- list(c0 = 2.5,
g0 = 5,
G0 = 5 / (2.5 - 1),
e1 = 0.001,
e2 = 0.001,
d1 = 0.001,
d2 = 0.001,
b_xi = 10,
b_tau = 10,
nu_xi = 5,
nu_tau = 5)
# default sv params
default_hyper_sv <- list(Bsigma_sv = 1,
a0_sv = 5,
b0_sv = 1.5,
bmu = 0,
Bmu = 1)
# Change hyperprior values if user overwrites them
if (missing(hyperprior_param)){
hyperprior_param <- default_hyper
} else {
# Check that hyperprior_param and sv_param are a list
if (is.list(hyperprior_param) == FALSE | is.data.frame(hyperprior_param)){
stop("hyperprior_param has to be a list")
}
stand_nam <- names(default_hyper)
user_nam <- names(hyperprior_param)
# Give out warning if an element of the parameter list is misnamed
if (any(!user_nam %in% stand_nam)){
wrong_nam <- user_nam[!user_nam %in% stand_nam]
warning(paste0(paste(wrong_nam, collapse = ", "),
ifelse(length(wrong_nam) == 1, " has", " have"),
" been incorrectly named in hyperprior_param and will be ignored"),
immediate. = TRUE)
}
# Merge users' and default values and ignore all misnamed values
missing_param <- stand_nam[!stand_nam %in% user_nam]
hyperprior_param[missing_param] <- default_hyper[missing_param]
hyperprior_param <- hyperprior_param[stand_nam]
}
# Same procedure for sv_param
if (missing(sv_param) | sv == FALSE){
sv_param <- default_hyper_sv
} else {
if (is.list(sv_param) == FALSE | is.data.frame(sv_param)){
stop("sv_param has to be a list")
}
stand_sv_nam <- names(default_hyper_sv)
user_sv_nam <- names(sv_param)
# Give out warning if an element of the parameter list is misnamed
if (any(!user_sv_nam %in% stand_sv_nam)){
wrong_nam <- user_sv_nam[!user_sv_nam %in% stand_sv_nam]
warning(paste0(paste(wrong_nam, collapse = ", "),
ifelse(length(wrong_nam) == 1, " has", " have"),
" been incorrectly named in sv_param and will be ignored"),
immediate. = TRUE)
}
# Merge users' and default values and ignore all misnamed values
missing_sv_param <- stand_sv_nam[!stand_sv_nam %in% user_sv_nam]
sv_param[missing_sv_param] <- default_hyper_sv[missing_sv_param]
sv_param <- sv_param[stand_sv_nam]
}
# Check if all numeric inputs are correct
to_test_num <- list(lambda2 = lambda2,
kappa2 = kappa2,
a_xi = a_xi,
a_tau = a_tau,
c_tuning_par_xi = c_tuning_par_xi,
c_tuning_par_tau = c_tuning_par_tau)
if (missing(hyperprior_param) == FALSE){
to_test_num <- c(to_test_num, hyperprior_param)
}
if (missing(sv_param) == FALSE){
to_test_num <- c(to_test_num, sv_param[names(sv_param) != "bmu"])
}
bad_inp <- sapply(to_test_num, numeric_input_bad)
if (any(bad_inp)){
stand_names <- c(names(default_hyper), names(default_hyper_sv), "lambda2", "kappa2", "a_xi", "a_tau", "c_tuning_par_xi", "c_tuning_par_tau")
bad_inp_names <- names(to_test_num)[bad_inp]
bad_inp_names <- bad_inp_names[bad_inp_names %in% stand_names]
stop(paste0(paste(bad_inp_names, collapse = ", "),
ifelse(length(bad_inp_names) == 1, " has", " have"),
" to be a single, positive number"))
}
# Check bmu seperately
if (!is.numeric(sv_param$bmu) | !is.scalar(sv_param$bmu)){
stop("bmu has to be a single number")
}
# Check if all integer inputs are correct
to_test_int <- list(niter = niter,
nburn = nburn,
nthin = nthin)
bad_int_inp <- sapply(to_test_int, int_input_bad)
if (any(bad_int_inp)){
bad_inp_names <- names(to_test_int)[bad_int_inp]
stop(paste0(paste(bad_inp_names, collapse = ", "),
ifelse(length(bad_inp_names) == 1, " has", " have"),
" to be a single, positive integer"))
}
if ((niter - nburn) < 2){
stop("niter has to be larger than or equal to nburn + 2")
}
if (nthin == 0){
stop("nthin can not be 0")
}
if ((niter - nburn)/2 < nthin){
stop("nthin can not be larger than (niter - nburn)/2")
}
# Check if all boolean inputs are correct
to_test_bool <- list(learn_lambda2 = learn_lambda2,
learn_kappa2 = learn_kappa2,
learn_a_xi = learn_a_xi,
learn_a_tau = learn_a_tau,
display_progress = display_progress,
sv = sv,
ret_beta_nc = ret_beta_nc)
bad_bool_inp <- sapply(to_test_bool, bool_input_bad)
if (any(bad_bool_inp)){
bad_inp_names <- paste(names(to_test_bool)[bad_bool_inp], collapse = ", ")
stop(paste0(bad_inp_names,
ifelse(length(bad_inp_names) == 1, " has", " have"),
" to be a single logical value"))
}
# # Check if formula is a formula
# if (inherits(formula, "formula") == FALSE){
# stop("formula is not of class formula")
# }
# Formula interface -------------------------------------------------------
#mf <- match.call(expand.dots = FALSE)
#m <- match(x = c("formula", "data"), table = names(mf), nomatch = 0L)
#mf <- mf[c(1L, m)]
#mf$drop.unused.levels <- TRUE
#mf$na.action <- na.pass
#mf[[1L]] <- quote(stats::model.frame)
#mf <- eval(expr = mf, envir = parent.frame())
## Create Vector y
#y <- model.response(mf, "numeric")
#mt <- attr(x = mf, which = "terms")
## Create Matrix X with dummies and transformations
#x <- model.matrix(object = mt, data = mf)
# # Check that there are no NAs in y and x
# if (any(is.na(y))) {
# stop("No NA values are allowed in response variable")
# }
#
# if (any(is.na(x))){
# stop("No NA values are allowed in covariates")
# }
#
# colnames(x)[colnames(x) == "(Intercept)"] <- "Intercept"
#
# d <- dim(x)[2]
a0 <- rep(0, 2 * 1)
store_burn <- FALSE
# Run sampler -------------------------------------------------------------
runtime <- system.time({
suppressWarnings({
res <- do_shrinkTVP(y,
a0,
d,
niter,
nburn,
nthin,
hyperprior_param$c0,
hyperprior_param$g0,
hyperprior_param$G0,
hyperprior_param$d1,
hyperprior_param$d2,
hyperprior_param$e1,
hyperprior_param$e2,
learn_lambda2,
learn_kappa2,
lambda2,
kappa2,
learn_a_xi,
learn_a_tau,
a_xi,
a_tau,
c_tuning_par_xi,
c_tuning_par_tau,
hyperprior_param$b_xi,
hyperprior_param$b_tau,
hyperprior_param$nu_xi,
hyperprior_param$nu_tau,
display_progress,
ret_beta_nc,
store_burn,
sv,
sv_param$Bsigma_sv,
sv_param$a0_sv,
sv_param$b0_sv,
sv_param$bmu,
sv_param$Bmu)
})
})
# Throw an error if the sampler failed
if (res$success_vals$success == FALSE){
stop(paste0("The sampler failed at iteration ",
res$success_vals$fail_iter,
" while trying to ",
res$success_vals$fail, ". ",
"Try rerunning the model. ",
"If the sampler fails again, try changing the prior to be more informative. ",
"If the problem still persists, please contact the maintainer: ",
maintainer("shrinkTVP")))
} else {
res$success_vals <- NULL
}
# Post process sampler results --------------------------------------------
if (display_progress == TRUE){
cat("Timing (elapsed): ", file = stderr())
cat(runtime["elapsed"], file = stderr())
cat(" seconds.\n", file = stderr())
cat(round( (niter + nburn) / runtime[3]), "iterations per second.\n\n", file = stderr())
cat("Converting results to coda objects and summarizing draws... ", file = stderr())
}
# Collapse sigma2 to single vector if sv=FALSE
# if (sv == FALSE){
# res$sigma2f <- matrix(res$sigma2f[1, 1, ], ncol = 1)
# }
# Remove empty storage elements
if (ret_beta_nc == FALSE){
res[["betaf_nc"]] <- NULL
res[["betab_nc"]] <- NULL
}
if (sv == TRUE){
res[["C0f"]] <- NULL
res[["C0b"]] <- NULL
} else {
res[["svf_mu"]] <- NULL
res[["svf_phi"]] <- NULL
res[["svf_sigma2"]] <- NULL
res[["svb_mu"]] <- NULL
res[["svb_phi"]] <- NULL
res[["svb_sigma2"]] <- NULL
}
if (learn_kappa2 == FALSE){
res[["kappa2f"]] <- NULL
res[["kappa2b"]] <- NULL
}
if (learn_lambda2 == FALSE){
res[["lambda2f"]] <- NULL
res[["lambda2b"]] <- NULL
}
if (learn_a_xi == FALSE){
res[["a_xif"]] <- NULL
res[["a_xif_acceptance"]] <- NULL
res[["a_xib"]] <- NULL
res[["a_xib_acceptance"]] <- NULL
}
if (learn_a_tau == FALSE){
res[["a_tauf"]] <- NULL
res[["a_tauf_acceptance"]] <- NULL
res[["a_taub"]] <- NULL
res[["a_taub_acceptance"]] <- NULL
}
# Create object to hold prior values
priorvals <- c()
if (learn_a_tau == TRUE){
priorvals["b_tau"] <- hyperprior_param$b_tau
priorvals["nu_tau"] <- hyperprior_param$nu_tau
} else {
priorvals["a_tau"] <- a_tau
}
if (learn_a_xi == TRUE){
priorvals["b_xi"] <- hyperprior_param$b_xi
priorvals["nu_xi"] <- hyperprior_param$nu_xi
} else {
priorvals["a_xi"] <- a_xi
}
if (learn_lambda2 == TRUE){
priorvals["e1"] <- hyperprior_param$e1
priorvals["e2"] <- hyperprior_param$e2
} else {
priorvals["lambda2"] <- lambda2
}
if (learn_kappa2 == TRUE){
priorvals["d1"] <- hyperprior_param$d1
priorvals["d2"] <- hyperprior_param$d2
} else {
priorvals["kappa2"] <- kappa2
}
if (sv == TRUE){
priorvals["Bsigma_sv"] <- sv_param$Bsigma_sv
priorvals["a0_sv"] <- sv_param$a0_sv
priorvals["b0_sv"] <- sv_param$b0_sv
priorvals["bmu"] <- sv_param$bmu
priorvals["Bmu"] <- sv_param$Bmu
} else {
priorvals["g0"] <- hyperprior_param$g0
priorvals["G0"] <- hyperprior_param$G0
priorvals["c0"] <- hyperprior_param$c0
}
res$priorvals <- priorvals
#
# # Add data to output
# res[["model"]] <- list()
# res$model$x <- x
# res$model$y <- y
# res$model$formula <- formula
# res$summaries <- list()
#
# # add attributes to the individual if they are distributions or individual statistics
# nsave <- ifelse(store_burn, floor(niter/nthin), floor((niter - nburn)/nthin))
# for (i in names(res)){
#
# attr(res[[i]], "type") <- ifelse(nsave %in% dim(res[[i]]), "sample", "stat")
#
# # Name each individual sample for plotting frontend
# if (attr(res[[i]], "type") == "sample"){
#
# if (dim(res[[i]])[2] == d){
#
# colnames(res[[i]]) <- paste0(i, "_", colnames(x))
#
# } else if (dim(res[[i]])[2] == 2 * d){
#
# colnames(res[[i]]) <- paste0(i, "_", rep( colnames(x), 2))
#
# } else {
#
# colnames(res[[i]]) <- i
#
# }
# }
#
# # Change objects to be coda compatible
# # Only apply to posterior samples
# if (attr(res[[i]], "type") == "sample"){
#
# # Differentiate between TVP and non TVP
# if (is.na(dim(res[[i]])[3]) == FALSE){
#
# # Create a sub list containing an mcmc object for each parameter in TVP case
# dat <- res[[i]]
# res[[i]] <- list()
# for (j in 1:dim(dat)[2]){
# res[[i]][[j]] <- as.mcmc(t(dat[, j, ]), start = niter - nburn, end = niter, thin = nthin)
# colnames(res[[i]][[j]]) <- paste0(i, "_", j, "_", 1:ncol(res[[i]][[j]]))
#
# # make it of class mcmc.tvp for custom plotting function
# class(res[[i]][[j]]) <- c("mcmc.tvp", "mcmc")
#
# attr(res[[i]][[j]], "type") <- "sample"
#
# # Imbue each mcmc.tvp object with index
# attr(res[[i]][[j]], "index") <- zoo::index(y)
# }
#
# if (length(res[[i]]) == 1){
# res[[i]] <- res[[i]][[j]]
# attr(res[[i]][[j]], "index") <- zoo::index(y)
# }
#
# # Make it of type 'sample' again
# attr(res[[i]], "type") <- "sample"
#
# # Rename
# if (dim(dat)[2] > 1){
# names(res[[i]]) <- colnames(dat)
# }
#
#
# } else {
#
# res[[i]] <- as.mcmc(res[[i]], start = niter - nburn, end = niter, thin = nthin)
#
# }
# }
#
# # Create summary of posterior
# if (is.list(res[[i]]) == FALSE & attr(res[[i]], "type") == "sample"){
# if (i != "theta_sr" & !(i == "sigma2" & sv == TRUE) & i != "beta"){
# res$summaries[[i]] <- t(apply(res[[i]], 2, function(x){
# obj <- as.mcmc(x, start = niter - nburn, end = niter, thin = nthin)
# return(c("mean" = mean(obj),
# "sd" = sd(obj),
# "median" = median(obj),
# "HPD" = HPDinterval(obj)[c(1, 2)],
# "ESS" = effectiveSize(obj)))
# }))
# } else if (i == "theta_sr"){
# res$summaries[[i]] <- t(apply(res[[i]], 2, function(x){
# obj <- as.mcmc(abs(x), start = niter - nburn, end = niter, thin = nthin)
# return(c("mean" = mean(obj),
# "sd" = sd(obj),
# "median" = median(obj),
# "HPD" = HPDinterval(obj)[c(1, 2)],
# "ESS" = effectiveSize(obj)))
# }))
# }
# }
# }
#
if (display_progress == TRUE) {
cat("Done!\n", file = stderr())
}
# add some attributes for the methods and plotting
attr(res, "class") <- "shrinkTVP"
attr(res, "learn_a_xi") <- learn_a_xi
attr(res, "learn_a_tau") <- learn_a_tau
attr(res, "learn_kappa2") <- learn_kappa2
attr(res, "learn_lambda2") <- learn_lambda2
attr(res, "niter") <- niter
attr(res, "nburn") <- nburn
attr(res, "nthin") <- nthin
attr(res, "sv") <- sv
#attr(res, "colnames") <- colnames(x)
attr(res, "index") <- zoo::index(y)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.