fit.JointMM.reducedmodel <-
function(d,quad.n){
dat = d$dat
dat.surv = d$dat.surv
X = d$X
X.aug = d$X.aug
Y= d$Y
Z = d$Z
nsample =d$nsample
N.obs = d$N.obs
N = d$N
prod.mat = d$prod.mat
gherm = d$gherm
gh.weights = d$gh.weights
gh.nodes = d$gh.nodes
bivar.gherm = d$bivar.gherm
X.test.coeff.index = d$X.test.coeff.index
d$Z.test.coeff.index = FALSE
Z.test.coeff.index = d$Z.test.coeff.index;
eps = function(maxY){
ifelse(maxY>0.01,0.01,ifelse(maxY>1e-3,1e-3,1e-4))
}
q <- max(Y) +eps (max(Y))
opt.H1.Sbeta <- optim(
par =c(.5,5,rep(0,sum(!X.test.coeff.index))), ## s2,phi,q,beta
fn=loglik.B.present.part.only,
method = 'L-BFGS-B',
lower = c(rep(1e-10,2),
rep(-Inf,sum(!X.test.coeff.index))),
upper = c(rep(Inf,2),rep(Inf,sum(!X.test.coeff.index))),
control= list(maxit = 1e3),
hessian = TRUE,
X.aug=X.aug,Y=Y,prod.mat=prod.mat,
X.test.coeff.index = X.test.coeff.index,
gh.weights=gh.weights,gh.nodes=gh.nodes,quad.n=quad.n)
par2 = opt.H1.Sbeta$par
names(par2) = c('se2','phi',paste0('beta',1:ncol(X.aug)-1))
hes2 = opt.H1.Sbeta$hessian
se2.hat <- par2[1]
opt.H1 <- optim(
par=c(1+1e-3,rep(0,ncol(Z)+2)),
fn=joint.loglike.one.part.model,
gr = grad.joint.loglike.one.part.model,
method = 'L-BFGS-B',
lower = c(1+1e-8,rep(-Inf,ncol(Z)+1),-Inf),
upper = c(Inf,rep(Inf,ncol(Z)+2)),
control= list(maxit = 1e3),
para.nuisance = c(par2[-c(1:3)],par2[1:2],q,par2[3]),
X.aug=X.aug,Y=Y,prod.mat=prod.mat,
X.test.coeff.index=X.test.coeff.index,
Z=Z,dat.surv=dat.surv,
Z.test.coeff.index=Z.test.coeff.index,
nsample = nsample,N= N,
gh.weights = gh.weights,
gh.nodes=gh.nodes,
quad.n=quad.n,
hessian = TRUE
)
est.H1 = c(par2,opt.H1$par)
names(est.H1) = c(names(par2),'scaleK',
paste0('gamma',0:ncol(Z)),'delta2'
)
est.hessian = adiag(hes2,opt.H1$hessian)
status = unique(c(opt.H1.Sbeta$convergence,opt.H1$convergence))
I.inverse = solve(est.hessian +1e-8)
vars = diag(I.inverse)
vars[which(vars<0)] = -vars[which(vars<0)]
SEs = sqrt(vars)
Wald.abundance = ifelse(is.na(SEs[length(SEs)]),NA,(est.H1[length(SEs)]/SEs[length(SEs)])^2)
pval.Wald.abundance = pchisq(Wald.abundance,df =1,lower.tail = FALSE)
d$par.est.Wald = est.H1
d$SEs = SEs
d$est.hessian = est.hessian
d$I.inverse = I.inverse
d$Wald.Ts = c(Wald.abundance = Wald.abundance)
d$pvals.Wald = c(pval.Wald.abundance=pval.Wald.abundance)
d$status.Wald = status
return(d)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.