fit.JointMM.reducedmodel.longitudinal.part <-
function(d,quad.n){
dat = d$dat
dat.surv = d$dat.surv
X = d$X
X.aug = d$X.aug
Y= d$Y
nsample =d$nsample
N.obs = d$N.obs
N = d$N
prod.mat = d$prod.mat
gherm = d$gherm
gh.weights = d$gh.weights
gh.nodes = d$gh.nodes
bivar.gherm = d$bivar.gherm
X.test.coeff.index = d$X.test.coeff.index
eps = function(maxY){
ifelse(maxY>0.01,0.01,ifelse(maxY>1e-3,1e-3,1e-4))
}
q <- max(Y) +eps (max(Y))
opt.H1.Sbeta <- optim(
par =c(.5,5,rep(0,sum(!X.test.coeff.index))), ## s2,phi,q,beta
fn=loglik.B.present.part.only,
method = 'L-BFGS-B',
lower = c(rep(1e-10,2),
rep(-Inf,sum(!X.test.coeff.index))),
upper = c(rep(Inf,2),rep(Inf,sum(!X.test.coeff.index))),
control= list(maxit = 1e3),
hessian = TRUE,
X.aug=X.aug,Y=Y,prod.mat=prod.mat,
X.test.coeff.index = X.test.coeff.index,
gh.weights=gh.weights,gh.nodes=gh.nodes,quad.n=quad.n)
est.H1 = opt.H1.Sbeta$par
names(est.H1) = c('se2','phi',paste0('beta',1:ncol(X.aug)-1))
hes2 = opt.H1.Sbeta$hessian
status = c(opt.H1.Sbeta$convergence)
I.inverse = solve(hes2 +1e-8)
vars = diag(I.inverse)
vars[which(vars<0)] = -vars[which(vars<0)]
SEs = sqrt(vars)
Wald.proportion.Longonly = pval.proportion.Longonly = rep(NA,ncol(X))
for (j in 1:ncol(X)){
ind = 3+j
Wald.proportion.Longonly[j] = ifelse(is.na(SEs[ind]),NA,(est.H1[ind]/SEs[ind])^2)
pval.proportion.Longonly[j]= pchisq(Wald.proportion.Longonly[j],df =1,lower.tail = FALSE)
}
names(Wald.proportion.Longonly) = names(pval.proportion.Longonly) = colnames(X)
d$par.est.Longonly = est.H1
d$SEs = SEs
d$est.hessian = hes2
d$I.inverse = I.inverse
d$Wald.Ts.Longonly = Wald.proportion.Longonly
d$pvals.Wald.Longonly = pval.proportion.Longonly
d$status.Wald.Longonly = status
return(d)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.