################################################################################
### The following are modified versions of functions from the surveillance package
### and wrappers around them.
### See below the original copyright declaration.
################################################################################
################################################################################
### Part of the surveillance package, http://surveillance.r-forge.r-project.org
### Free software under the terms of the GNU General Public License, version 2,
### a copy of which is available at http://www.r-project.org/Licenses/.
###
### Simulate from a HHH4 model
###
### Copyright (C) 2012 Michaela Paul, 2013-2016,2018 Sebastian Meyer
### $Revision$
### $Date$
################################################################################
#' Simulate \code{hhh4ZI} Count Time Series
#'
#' Fork of \code{\link[surveillance]{simulate.hhh4}} to support
#' zero-inflated models fitted with \code{\link{hhh4ZI}}.
#'
#' @inheritParams surveillance::simulate.hhh4
#' @param object of class \code{"\link{hhh4ZI}"}.
#' @import stats
#' @export
simulate.hhh4ZI <- function (object, # result from a call to hhh4ZI
nsim=1, # number of replicates to simulate
seed=NULL,
y.start=NULL, # initial counts for epidemic components
subset=1:nrow(object$stsObj),
coefs=coef(object), # coefficients used for simulation
components=c("ar","ne","end"), # which comp to include
simplify=nsim>1, # counts array only (no full sts)
...)
{
## Determine seed (this part is copied from stats:::simulate.lm with
## Copyright (C) 1995-2012 The R Core Team)
if(!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1) # initialize the RNG if necessary
if(is.null(seed))
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
## END seed
cl <- match.call()
theta <- if (missing(coefs)) coefs else surveillance:::checkCoefs(object, coefs)
stopifnot(subset >= 1, subset <= nrow(object$stsObj))
## lags
lag.ar <- object$control$ar$lag
lag.ne <- object$control$ne$lag
lag.gamma <- object$control$zi$lag
maxlag <- max(lag.ar, lag.ne, lag.gamma)
## initial counts
nUnits <- object$nUnit
if (is.null(y.start)) { # set starting value to mean observed (in subset!)
y.means <- ceiling(colMeans(observed(object$stsObj)[subset,,drop=FALSE]))
y.start <- matrix(y.means, maxlag, nUnits, byrow=TRUE)
} else {
if (is.vector(y.start)) y.start <- t(y.start)
if (ncol(y.start) != nUnits)
stop(sQuote("y.start"), " must have nUnits=", nUnits, " columns")
if (nrow(y.start) < maxlag)
stop("need 'y.start' values for lag=", maxlag, " initial time points")
}
## store model terms in the hhh4 object because we request them repeatedly
## (within get_exppreds_with_offsets() and directly afterwards)
## CAVE: for an ri()-model, building the terms affects the .Random.seed,
## so doing that twice would yield different simulations than pre-1.16.2
if (is.null(object$terms))
object$terms <- terms.hhh4ZI(object)
## get fitted exppreds nu_it, phi_it, lambda_it (incl. offsets, t in subset)
exppreds <- surveillance:::get_exppreds_with_offsets(object, subset = subset, theta = theta)
## extract overdispersion parameters (simHHH4 assumes psi->0 means Poisson)
model <- terms.hhh4ZI(object)
psi <- surveillance:::splitParams(theta,model)$overdisp
if (length(psi) > 1) # "NegBinM" or shared overdispersion parameters
psi <- psi[model$indexPsi]
## weight matrix/array of the ne component
neweights <- surveillance::getNEweights(object, surveillance::coefW(theta))
## set predictor to zero if not included ('components' argument)
stopifnot(length(components) > 0, components %in% c("ar", "ne", "end"))
getComp <- function (comp) {
exppred <- exppreds[[comp]]
if (comp %in% components) exppred else "[<-"(exppred, value = 0)
}
ar <- getComp("ar")
ne <- getComp("ne")
end <- getComp("end")
gamma_end <- gammaZero(theta, model, subset, .ar = FALSE)
gamma_ar <- theta[grepl("zi.AR", names(theta))]
gamma_ar <- if(! model$zi.lag.unitSpecific) matrix(rep(gamma_ar, nUnits), ncol = nUnits) else
matrix(gamma_ar, ncol = nUnits, byrow = TRUE)
## simulate
simcall <- quote(
simHHH4ZI(ar, ne, end, psi,gamma_end, gamma_ar,
neweights, y.start, lag.ar, lag.ne, lag.gamma)
)
if (!simplify) {
## result template
res0 <- object$stsObj[subset,]
setObserved <- function (observed) {
res0@observed[] <- observed
res0
}
simcall <- call("setObserved", simcall)
}
res <- if (nsim==1) eval(simcall) else
replicate(nsim, eval(simcall),
simplify=if (simplify) "array" else FALSE)
if (simplify) {
dimnames(res)[1:2] <- list(subset, colnames(model$response))
attr(res, "initial") <- y.start
attr(res, "stsObserved") <- object$stsObj[subset,]
class(res) <- c("hhh4ZIsims","hhh4sims")
}
## Done
attr(res, "call") <- cl
attr(res, "seed") <- RNGstate
res
}
#' @export
terms.hhh4ZI <- function (x, ...)
{
if (is.null(x$terms))
interpretControl(x$control,x$stsObj) else x$terms
}
simHHH4ZI <- function(ar, # lambda_it (nTime x nUnits matrix)
ne, # phi_it (nTime x nUnits matrix)
end, # nu_it (nTime x nUnits matrix, offset included)
psi, # overdisp param(s) or numeric(0) (psi->0 = Poisson)
gamma_end, # evaluated logit-scale linear predictor of gamma_it except lagged obs (nTime x nUnits matrix)
gamma_ar, # coefficient of lagged obs in gamma_it
#(lag.gamma (in the order of lag.gamma) x nUnits matrix)
neW, # weight matrix/array for neighbourhood component
start, # starting counts (vector of length nUnits, or
# matrix with nUnits columns if lag > 1)
lag.ar = 1,
lag.ne = lag.ar,
lag.gamma = lag.ar){
nTime <- nrow(end)
nUnits <- ncol(end)
## check and invert psi since rnbinom() uses different parametrization
size <- if (length(psi) == 0 ||
isTRUE(all.equal(psi, 0, check.attributes=FALSE))) {
stop("psi must be provided and not equal to zero")
} else {
if (!length(psi) %in% c(1, nUnits))
stop("'length(psi)' must be ",
paste(unique(c(1, nUnits)), collapse = " or "),
" (number of units)")
1/psi
}
# simulate from NegBin model
## unit-specific 'mean's and variance = mean + psi*mean^2
## where 'size'=1/psi and length(psi) == 1 or length(mean)
rdistr <- function(n, mean) rnbinom(n, mu = mean, size = size)
## weighted sum of counts of other (neighbouring) regions
## params: y - vector with (lagged) counts of regions
## W - nUnits x nUnits adjacency/weight matrix (0=no neighbour)
wSumNE <- if (is.null(neW) || all(neW == 0)) { # includes the case nUnits==1
function (y, W) numeric(nUnits)
} else function (y, W) .colSums(W * y, nUnits, nUnits)
## W * y = (W[1, ]* y[1]; W[2, ]* y[2]; ...)
## initialize matrices for means mu_i,t and simulated data y_i,t
mu <- y <- gamma <- matrix(0, nTime, nUnits)
omega <- matrix(NA, nTime, nUnits)
y <- rbind(start, y)
nStart <- nrow(y) - nrow(mu) # usually just 1 for lag=1
timeDependentWeights <- length(dim(neW)) == 3
if (!timeDependentWeights) neWt <- neW
for(t in seq_len(nTime)){
#browser()
if (timeDependentWeights) neWt <- neW[,,t]
gamma[t,] <- plogis(if(lag.gamma[1] > 0) {
gamma_end[t,] + (if(length(lag.gamma) >1)
colSums(y[nStart+t-lag.gamma,] * gamma_ar) else
y[nStart+t-lag.gamma,] * gamma_ar)
} else gamma_end[t,])
omega[t,] <- runif(nUnits) < gamma[t,]
#browser()
## mean mu_i,t = lambda*y_i,t-1 + phi*sum_j wji*y_j,t-1 + nu_i,t
mu[t,] <-
ar[t,] * y[nStart+t-lag.ar,] +
ne[t,] * wSumNE(y[nStart+t-lag.ne,], neWt) +
end[t,]
## Sample from NegBin or zero with that mean
y[nStart+t,] <-
ifelse(omega[t,], rep(0, nUnits),
rdistr(nUnits, mu[t,]))
}
## return simulated data without initial counts
# list(y = y[-seq_len(nStart),,drop=FALSE], mu = mu, omega = omega)
y[-seq_len(nStart),,drop=FALSE]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.