#' Run Single-Trait without Annotation Model
#'
#' @param data A dataframe with columns: Gene name, mutability, de novo mutation count for traits
#' @param dn_col A character indicating the column name of de novo mutation counts for the trait
#' @param N_1 Cohort size for the trait
#' @param pi_init Initial value for risk gene proportion. Default=0.1
#' @param threshold Threshold for EM algorithm. Default=1e-6
#' @return The estimated model parameters and the posterior probabilities of genes under different assumptions
#' \item{result}{A dataframe that includes estimated posterior probabilities of risk genes for each trait and estimated posterior probability for shared risk gene}
#' \item{pi}{Estimated proportion vector, the second value represents risk gene proportion}
#' \item{beta}{Estimated log of gamma for risk genes}
#' \item{Z_mat}{Estimated posterior probabilities of genes under different assumptions}
#' @import stats
#' @export
#'
Single_No<-function(data,dn_col,N_1,
pi_init=0.1,
threshold=1e-6){
dnm<-data
#number of gene
P <- dim(dnm)[1]
rownames(dnm) <- 1:P
#mutability of genes
mu <- dnm$mut
#count for the trait
Y_1 <- dnm[,dn_col]
#Initialization scheme: fixed approach
pi <- c(1-pi_init,pi_init)
pi_old <- rep(0, 2)
# Initialization of gamma
beta_0 <- 99999
beta_0_new <- 0.1
#first round estimation
#####loop start######
k=0
while(sum(abs(pi-pi_old)) > threshold)
{
print(paste("round", k+1, "start!"))
prob_1 <- matrix(NA, P, 2)
prob_1[,1] <- dpois(Y_1, 2*N_1*mu)
prob_1[,2] <- dpois(Y_1, 2*N_1*mu*exp(beta_0_new))
prob <- prob_1
#update z (gene i)
prob_weighted <- prob %*% diag(pi)
Z <- prob_weighted / apply(prob_weighted, 1, sum)
#update pi
pi_old <- pi
pi<- apply(Z, 2, sum) / P
#update beta
beta_0 <- beta_0_new
beta_0_new <- log(sum(Z[,2] * Y_1) / sum(Z[,2] * 2*N_1*mu))
k <- k + 1
}
print("Complete!")
result<-data.frame(Gene=dnm$Gene,
dn_count=Y_1,
Z=Z[,2])
return(list(result=result,pi=pi,beta=beta_0,Z_mat=Z))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.