###############################################
# Author: Katarzyna Reluga #
# The computations were performed at the #
# University of Geneva on the Baobab cluster. #
###############################################
######################################
# Simulation setting: n = 90, m_i = 5#
######################################
#rm(list=ls())
# Set seed ------------------------------------------------------------
set.seed(10)
# Define the number of clusters and units in each cluster -------------
n = 90
m_i = 5
m_total = n * m_i
# Define beta and sigmas ----------------------------------------------
beta = c(2.25, -1.1, 2.43, rep(0, 2))
sig_e = 1
sig_u = 0.5
# Load appropriate matrix X from data ----------------------------------
X = simulations_n90_mi5
# Add intercept -----------------------------------------------------
X_intercept = cbind(rep(1, m_total), X)
# Create (and validate) a factor vector with clusters ------------
clusterID = rep(1:n, each = m_i)
# Create responses, errors and random effects -------------------
e_ij = rnorm(m_total, 0, sig_e)
u_i = rnorm(n, 0, sig_u)
u_i_aug = rep(u_i, each = m_i)
y = X_intercept%*% beta + u_i_aug + e_ij
# Compute cAIC for models from the set of models -----------------------
cAIC_model_set = compute_cAIC_for_model_set(
X,
y,
clusterID,
model = "NERM",
covariate_selection_matrix = NULL,
modelset = "part_subset",
common = c(1:2),
intercept = FALSE
)
cAIC_min = cAIC_model_set$cAIC_min
degcAIC_models = cAIC_model_set$degcAIC_models
X_full = cAIC_model_set$X_full
X_cluster_full = cAIC_model_set$X_cluster_full
sig_u_full = cAIC_model_set$sig_u_full
sig_e_full = cAIC_model_set$sig_e_full
beta_sel = cAIC_model_set$beta_sel
mu_sel = cAIC_model_set$mu_sel
modelset_matrix = cAIC_model_set$modelset_matrix
x_beta_lin_com = cAIC_model_set$X_cluster_full
# Post-cAIC CI for mixed and fixed parameters -------------------------------------
postcAIC_CI_results = postcAIC_CI(
cAIC_min,
degcAIC_models,
X_full,
X_cluster_full,
sig_u_full,
sig_e_full,
model = "NERM",
clusterID,
beta_sel,
mu_sel,
modelset_matrix,
x_beta_lin_com = NULL,
n_starting_points = 5,
scale_mvrnorm = 11
)
# Naive CI for mixed and fixed parameters -------------------------------------
sig_u_sel = cAIC_model_set$sig_u_sel
sig_e_sel = cAIC_model_set$sig_e_sel
indices_sel = cAIC_model_set$indices_sel
X_cluster_sel = cAIC_model_set$X_cluster_full[, indices_sel]
C_cluster_sel = cbind(as.matrix(X_cluster_sel), diag(n))
x_beta_lin_com = cAIC_model_set$X_cluster_full
naive_CI_results = naive_CI(
beta_sel,
mu_sel,
sig_u_sel,
sig_e_sel,
sig_u_full,
sig_e_full,
X_full,
C_cluster_sel,
clusterID,
indices_sel,
type_MSE_mixed = "corrected",
x_beta_lin_com
)
# Post-OBSP CI for mixed parameters -------------------------------------
postOBSP_CI_results = postOBSP_CI(
X,
y,
clusterID,
X_cluster_full,
model = "NERM",
covariate_selection_matrix = NULL,
modelset = "part_subset",
intercept = FALSE,
common = c(1:2),
boot = 1000
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.