n = 10
m_i = 5
m_total = 50
clusterID = rep(1:n, m_i)
p = 10
beta = rep(2, p)
u_i = rnorm(n, 0, 2)
u_i_aug = rep(u_i, each = m_i)
X = matrix(rnorm(m_total * p), m_total, p)
y = X%*%beta + u_i_aug + rnorm(m_total, 0, 1)
cAIC_model_set = compute_cAIC_for_model_set(X, y, clusterID,
model = "NERM",
covariate_selection_matrix = NULL,
modelset = "part_subset",
common = c(1:8),
intercept = FALSE)
cAIC_min = cAIC_model_set$cAIC_min
degcAIC_models = cAIC_model_set$degcAIC_models
X_full = cAIC_model_set$X_full
X_cluster_full = cAIC_model_set$X_cluster_full
sig_u_full = cAIC_model_set$sig_u_full
sig_e_full = cAIC_model_set$sig_e_full
beta_sel = cAIC_model_set$beta_sel
mu_sel = cAIC_model_set$mu_sel
# Naive CI for mixed and fixed parameters -------------------------------------
sig_u_sel = cAIC_model_set$sig_u_sel
sig_e_sel = cAIC_model_set$sig_e_sel
indices_sel = cAIC_model_set$indices_sel
X_cluster_sel = cAIC_model_set$X_cluster_full[, indices_sel]
C_cluster_sel = cbind(as.matrix(X_cluster_sel), diag(n))
x_beta_lin_com = cAIC_model_set$X_cluster_full
naive_CI_results = naive_CI(
beta_sel,
mu_sel,
sig_u_sel,
sig_e_sel,
sig_u_full,
sig_e_full,
X_full,
C_cluster_sel,
clusterID,
indices_sel,
type_MSE_mixed = "both",
x_beta_lin_com
)
plot(naive_CI_results, type = "both")
test_that("Output is correct", {
expect_match(class(naive_CI_results), "naive_CI")
expect_length(naive_CI_results, 8)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.