# Define basic parameters -------------------------------------------------
n = 15
m_i = 5
m_total = n * m_i
beta = c(2.25, -1.1, 2.43, rep(0, 2))
sig_e = 1
sig_u = 1
X = simulations_n15_mi5
X_intercept = cbind(rep(1, m_total), X)
clusterID = rep(1:n, each = m_i)
# Create responses, errors and random effects -------------------
e_ij = rnorm(m_total, 0, sig_e)
u_i = rnorm(n, 0, sig_u)
u_i_aug = rep(u_i, each = m_i)
y = X_intercept%*% beta + u_i_aug + e_ij
# Post-OBSP inference ----------------------------------------
postOBSP_CI_results = postOBSP_CI(X, y,
clusterID,
X_cluster_full = NULL,
model = "NERM",
covariate_selection_matrix = NULL,
modelset = "part_subset",
intercept = FALSE,
common = c(1:2),
boot = 200)
plot(postOBSP_CI_results, order_estimates = sample(n, replace = T))
test_that("Output is correct", {
expect_match(class(postOBSP_CI_results), "postOBSP_CI")
expect_length(postOBSP_CI_results, 5)
expect_match(class(postOBSP_CI_results$postOBSP_up), "numeric")
expect_match(class(postOBSP_CI_results$postOBSP_do), "numeric")
expect_match(class(postOBSP_CI_results$mu_hat_sel), "numeric")
expect_match(class(postOBSP_CI_results$OBSP_models), "numeric")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.