# Define basic parameters -------------------------------------------------
n = 15
m_i = 5
m_total = n * m_i
beta = c(2.25, -1.1, 2.43, rep(0, 2))
sig_e = 1
sig_u = 1
X = simulations_n15_mi5
X_intercept = cbind(rep(1, m_total), X)
clusterID = rep(1:n, each = m_i)
# Create responses, errors and random effects -------------------
e_ij = rnorm(m_total, 0, sig_e)
u_i = rnorm(n, 0, sig_u)
u_i_aug = rep(u_i, each = m_i)
y = X_intercept%*% beta + u_i_aug + e_ij
cAIC_model_set = compute_cAIC_for_model_set(X, y, clusterID,
model = "NERM",
covariate_selection_matrix = NULL,
modelset = "part_subset",
common = c(1:2),
intercept = FALSE)
cAIC_min = cAIC_model_set$cAIC_min
degcAIC_models = cAIC_model_set$degcAIC_models
X_full = cAIC_model_set$X_full
X_cluster_full = cAIC_model_set$X_cluster_full
sig_u_full = cAIC_model_set$sig_u_full
sig_e_full = cAIC_model_set$sig_e_full
beta_sel = cAIC_model_set$beta_sel
mu_sel = cAIC_model_set$mu_sel
modelset_matrix = cAIC_model_set$modelset_matrix
x_beta_lin_com = cAIC_model_set$X_cluster_full
# Post-cAIC CI for mixed and fixed parameters -------------------------------------
postcAIC_CI_results = postcAIC_CI(cAIC_min,
degcAIC_models,
X_full,
X_cluster_full,
sig_u_full,
sig_e_full,
model = "NERM",
clusterID,
beta_sel,
mu_sel,
modelset_matrix,
x_beta_lin_com = NULL)
plot(postcAIC_CI_results, order_estimates = sample(n, replace = T))
test_that("Output is correct", {
expect_match(class(postcAIC_CI_results), "postcAIC_CI")
expect_length(postcAIC_CI_results, 6)
expect_match(class(postcAIC_CI_results$beta_postcAIC_CI_up), "numeric")
expect_match(class(postcAIC_CI_results$beta_postcAIC_CI_do), "numeric")
expect_match(class(postcAIC_CI_results$mixed_postcAIC_CI_up), "numeric")
expect_match(class(postcAIC_CI_results$mixed_postcAIC_CI_do), "numeric")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.