R/bprobgHsDiscr2SS.r

Defines functions bprobgHsDiscr2SS

Documented in bprobgHsDiscr2SS

bprobgHsDiscr2SS <- function(params, respvec, VC, ps, AT = FALSE){

p1 <- p2 <- pdf1 <- pdf2 <- c.copula.be2 <- c.copula.be1 <- c.copula2.be1be2 <- NA

  eta1 <- VC$X1%*%params[1:VC$X1.d2]
  eta2 <- VC$X2%*%params[(VC$X1.d2+1):(VC$X1.d2+VC$X2.d2)]
  etad <- etas <- l.ln <- NULL 


  
  
if(is.null(VC$X3)){  
  sigma2.st <- etas <- params[(VC$X1.d2 + VC$X2.d2 + 1)]
  teta.st   <- etad <- params[(VC$X1.d2 + VC$X2.d2 + 2)]
} 

if(!is.null(VC$X3)){  
  sigma2.st <- etas <- VC$X3%*%params[(VC$X1.d2+VC$X2.d2+1):(VC$X1.d2+VC$X2.d2+VC$X3.d2)]
  teta.st   <- etad <- VC$X4%*%params[(VC$X1.d2+VC$X2.d2+VC$X3.d2+1):(VC$X1.d2+VC$X2.d2+VC$X3.d2+VC$X4.d2)]
}  
  
    sstr1 <- esp.tr(sigma2.st, VC$margins[2])  
    sigma2.st <- sstr1$vrb.st 
    sigma2    <- sstr1$vrb 

    eta2 <- eta.tr(eta2, VC$margins[2])
    
  
 dHs <- distrHsDiscr(respvec$y2, eta2, sigma2, sigma2.st, nu = 1, nu.st = 1, margin2=VC$margins[2], naive = FALSE, y2m = VC$y2m, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)
  
  
 pdf2                         <- dHs$pdf2
 p2                           <- dHs$p2 
 derpdf2.dereta2              <- dHs$derpdf2.dereta2 
 derpdf2.dersigma2.st         <- dHs$derpdf2.dersigma2.st 
 derp2.dersigma.st            <- dHs$derp2.dersigma.st
 derp2.dereta2                <- dHs$derp2.dereta2
 der2p2.dereta2eta2           <- dHs$der2p2.dereta2eta2 
 der2pdf2.dereta2             <- dHs$der2pdf2.dereta2
 der2p2.dersigma2.st2         <- dHs$der2p2.dersigma2.st2
 der2pdf2.dersigma2.st2       <- dHs$der2pdf2.dersigma2.st2
 der2p2.dereta2dersigma2.st   <- dHs$der2p2.dereta2dersigma2.st            
 der2pdf2.dereta2dersigma2.st <- dHs$der2pdf2.dereta2dersigma2.st  
  
  
  pd1 <- probm(eta1, VC$margins[1], bc = TRUE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) 
  p1  <- 1 - pd1$pr                           #   pnorm(-eta1), p(y1=0)


########################################################################################################  
  
resT    <- teta.tr(VC, teta.st)
teta.st <- resT$teta.st
teta    <- resT$teta
    

########################################################################################################

C1 <- mm(BiCDF(p1[VC$inde], p2,          VC$nC, teta, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr  )
C2 <- mm(BiCDF(p1[VC$inde], mm(p2-pdf2, min.pr = VC$min.pr, max.pr = VC$max.pr), VC$nC, teta, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr  )

A <- mm(C1 - C2, min.pr = VC$min.pr, max.pr = VC$max.pr)
B <- mm(pdf2 - A, min.pr = VC$min.pr, max.pr = VC$max.pr)

l.par1          <- log(p1)
l.par1[VC$inde] <- log(B) 

l.par <- VC$weights*l.par1    
  

########################################################################################################
 
dH1 <- copgHs(p1[VC$inde], p2,          eta1=NULL, eta2=NULL, teta, teta.st, VC$BivD, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)
dH2 <- copgHs(p1[VC$inde], mm(p2-pdf2, min.pr = VC$min.pr, max.pr = VC$max.pr), eta1=NULL, eta2=NULL, teta, teta.st, VC$BivD, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) 
 
c.copula.be1.C1 <- dH1$c.copula.be1 
c.copula.be1.C2 <- dH2$c.copula.be1 

c.copula.be2.C1 <- dH1$c.copula.be2 
c.copula.be2.C2 <- dH2$c.copula.be2 

derp2m1.dereta2     <- derp2.dereta2 - derpdf2.dereta2
derp2m1.dersigma.st <- derp2.dersigma.st - derpdf2.dersigma2.st 

c.copula.theta.C1 <- dH1$c.copula.theta # here there is theta star already
c.copula.theta.C2 <- dH2$c.copula.theta


derp1.dereta1   <- pd1$derp1.dereta1    # -dnorm(-eta1) 


Cc <- mm(c.copula.be1.C1 - c.copula.be1.C2, min.pr = VC$min.pr, max.pr = VC$max.pr) 
C  <- Cc*derp1.dereta1[VC$inde] 

Cs    <- c.copula.theta.C1  - c.copula.theta.C2
Cssb2 <- c.copula.be2.C1*derp2.dereta2 - c.copula.be2.C2*derp2m1.dereta2  
CssSI <- c.copula.be2.C1*derp2.dersigma.st - c.copula.be2.C2*derp2m1.dersigma.st  

  dl.dbe11          <- 1/p1*derp1.dereta1 
  dl.dbe11[VC$inde] <- -C/B  
  dl.dbe1           <- VC$weights*dl.dbe11 
  dl.dteta.st  <- VC$weights[VC$inde]*(-Cs/B)                     
  dl.dbe2      <- VC$weights[VC$inde]*( (derpdf2.dereta2 - Cssb2)/B    )
  dl.dsigma.st <- VC$weights[VC$inde]*( (derpdf2.dersigma2.st - CssSI)/B  )
 
 
######################################################################################################## 
 
  
  c.copula2.be1.C1 <- dH1$c.copula2.be1
  c.copula2.be1.C2 <- dH2$c.copula2.be1
  
  c.copula2.be2.C1 <- dH1$c.copula2.be2
  c.copula2.be2.C2 <- dH2$c.copula2.be2
  
  c.copula2.be1be2.C1 <- dH1$c.copula2.be1be2
  c.copula2.be1be2.C2 <- dH2$c.copula2.be1be2
  
  c.copula2.be2th.C1 <- dH1$c.copula2.be2th
  c.copula2.be2th.C2 <- dH2$c.copula2.be2th  
  
  
 
  der2p1.dereta1eta1 <- pd1$der2p1.dereta1eta1
  
  derC.dereta1 <- (c.copula2.be1.C1 - c.copula2.be1.C2)*derp1.dereta1[VC$inde]^2 + Cc*der2p1.dereta1eta1[VC$inde]
  

  c.copula2.theta.C1 <- dH1$bit1.th2ATE 
  c.copula2.theta.C2 <- dH2$bit1.th2ATE 
  
  c.copula.thet.C1 <- dH1$c.copula.thet # NO star
  c.copula.thet.C2 <- dH2$c.copula.thet
  
  derteta.derteta.st         <- dH1$derteta.derteta.st          
  der2teta.derteta.stteta.st <- dH1$der2teta.derteta.stteta.st
  
  derCs.dertheta.st <- (c.copula2.theta.C1 - c.copula2.theta.C2)*derteta.derteta.st^2 + (c.copula.thet.C1 - c.copula.thet.C2)*der2teta.derteta.stteta.st
  
  derA.dereta2 <- c.copula.be2.C1*derp2.dereta2   - c.copula.be2.C2*derp2m1.dereta2 
  derB.dereta2 <- derpdf2.dereta2 - derA.dereta2 
  
  der2p2m1.dereta2eta2 <- der2p2.dereta2eta2 - der2pdf2.dereta2
  derCssb2.dereta2 <- c.copula2.be2.C1*derp2.dereta2^2 + c.copula.be2.C1*der2p2.dereta2eta2 - (c.copula2.be2.C2*derp2m1.dereta2^2 + c.copula.be2.C2*der2p2m1.dereta2eta2)                                                                     
      
  derA.dersigma2.st <- c.copula.be2.C1*derp2.dersigma.st - c.copula.be2.C2*derp2m1.dersigma.st 
  derB.dersigma2.st <- derpdf2.dersigma2.st - derA.dersigma2.st 
  

  der2p2m1.dersigma2.st2 <- der2p2.dersigma2.st2 - der2pdf2.dersigma2.st2
  derCssSI.dersigma2.st <- c.copula2.be2.C1*derp2.dersigma.st^2 + c.copula.be2.C1*der2p2.dersigma2.st2 - (c.copula2.be2.C2*derp2m1.dersigma.st^2 + c.copula.be2.C2*der2p2m1.dersigma2.st2)                                                                     
      
  derC.dereta2 <- (c.copula2.be1be2.C1*derp2.dereta2 - c.copula2.be1be2.C2*derp2m1.dereta2)*derp1.dereta1[VC$inde]    
  derC.dersigma2.st <- (c.copula2.be1be2.C1*derp2.dersigma.st - c.copula2.be1be2.C2*derp2m1.dersigma.st)*derp1.dereta1[VC$inde] 
 
  c.copula2.be1th.C1 <- dH1$c.copula2.be1th 
  c.copula2.be1th.C2 <- dH2$c.copula2.be1th 
  
  derC.dertheta.st <- (c.copula2.be1th.C1 - c.copula2.be1th.C2)*derp1.dereta1[VC$inde] 
  
  der2p2m1.dereta2dersigma2.st <- der2p2.dereta2dersigma2.st - der2pdf2.dereta2dersigma2.st 
  
  derCssb2.dersigma2.st <- c.copula2.be2.C1*derp2.dereta2*derp2.dersigma.st + c.copula.be2.C1*der2p2.dereta2dersigma2.st - (c.copula2.be2.C2*derp2m1.dereta2*derp2m1.dersigma.st + c.copula.be2.C2*der2p2m1.dereta2dersigma2.st)   
  
  
  derCs.dereta2      <- c.copula2.be2th.C1*derp2.dereta2 - c.copula2.be2th.C2*derp2m1.dereta2
  derCs.dersigma2.st <- c.copula2.be2th.C1*derp2.dersigma.st - c.copula2.be2th.C2*derp2m1.dersigma.st
  





  d2l.be1.be11          <- -1/p1^2*derp1.dereta1*derp1.dereta1 + 1/p1*der2p1.dereta1eta1  
  d2l.be1.be11[VC$inde] <- -C^2/B^2 - derC.dereta1/B    
  d2l.be1.be1           <- -VC$weights*d2l.be1.be11 

  d2l.rho.rho      <- -VC$weights[VC$inde]*(  -Cs^2/B^2  - derCs.dertheta.st/B )
  d2l.be2.be2      <- -VC$weights[VC$inde]*( -derB.dereta2/B^2*(derpdf2.dereta2-Cssb2) + ( der2pdf2.dereta2 - derCssb2.dereta2)/B  )
  d2l.sigma.sigma  <- -VC$weights[VC$inde]*( - derB.dersigma2.st/B^2*(derpdf2.dersigma2.st-CssSI) + ( der2pdf2.dersigma2.st2 - derCssSI.dersigma2.st)/B  )
  d2l.be1.be2      <- -VC$weights[VC$inde]*( ( derB.dereta2/B^2)*C - derC.dereta2/B )
  d2l.be1.sigma    <- -VC$weights[VC$inde]*( ( derB.dersigma2.st/B^2)*C - derC.dersigma2.st/B )
  d2l.be1.rho      <- -VC$weights[VC$inde]*(  -C*Cs/B^2 - derC.dertheta.st/B )
  d2l.be2.sigma    <- -VC$weights[VC$inde]*(  -derB.dersigma2.st/B^2*(derpdf2.dereta2-Cssb2) + ( der2pdf2.dereta2dersigma2.st - derCssb2.dersigma2.st)/B    )
  d2l.be2.rho      <- -VC$weights[VC$inde]*(  derB.dereta2/B^2*Cs - derCs.dereta2/B )
  d2l.rho.sigma    <- -VC$weights[VC$inde]*(  derB.dersigma2.st/B^2*Cs - derCs.dersigma2.st/B )
  
  
  

if( is.null(VC$X3) ){


  be1.be1   <- crossprod(VC$X1*c(d2l.be1.be1),VC$X1)
  be2.be2   <- crossprod(VC$X2*c(d2l.be2.be2),VC$X2)
  be1.be2   <- crossprod(VC$X1[VC$inde,]*c(d2l.be1.be2),VC$X2)
  be1.rho   <- t(t(rowSums(t(VC$X1[VC$inde,]*c(d2l.be1.rho)))))
  be1.sigma <- t(t(rowSums(t(VC$X1[VC$inde,]*c(d2l.be1.sigma))))) 
  be2.rho   <- t(t(rowSums(t(VC$X2*c(d2l.be2.rho)))))
  be2.sigma <- t(t(rowSums(t(VC$X2*c(d2l.be2.sigma))))) 

  H <- rbind( cbind( be1.be1    ,   be1.be2    ,   be1.sigma,            be1.rho  ), 
              cbind( t(be1.be2) ,   be2.be2    ,   be2.sigma,            be2.rho  ), 
              cbind( t(be1.sigma),  t(be2.sigma),  sum(d2l.sigma.sigma), sum(d2l.rho.sigma) ),
              cbind( t(be1.rho) ,   t(be2.rho),    sum(d2l.rho.sigma),   sum(d2l.rho.rho)   ) 
              ) 
         
  G   <- -c( colSums( c(dl.dbe1)*VC$X1 ) ,
             colSums( c(dl.dbe2)*VC$X2 ) ,
             sum( dl.dsigma.st ),
             sum( dl.dteta.st ) )
    
}




if( !is.null(VC$X3) ){

  be1.be1   <- crossprod(VC$X1*c(d2l.be1.be1),VC$X1)
  be2.be2   <- crossprod(VC$X2*c(d2l.be2.be2),VC$X2)
  be1.be2   <- crossprod(VC$X1[VC$inde,]*c(d2l.be1.be2),VC$X2)
  
  be1.rho   <- crossprod(VC$X1[VC$inde,]*c(d2l.be1.rho),  VC$X4)                                     
  be1.sigma <- crossprod(VC$X1[VC$inde,]*c(d2l.be1.sigma),VC$X3)                                   
  be2.rho   <- crossprod(VC$X2*c(d2l.be2.rho),  VC$X4)                                     
  be2.sigma <- crossprod(VC$X2*c(d2l.be2.sigma),VC$X3)  
  
  sigma.sigma <- crossprod(VC$X3*c(d2l.sigma.sigma),VC$X3)   
  sigma.rho   <- crossprod(VC$X3*c(d2l.rho.sigma),VC$X4)  
  rho.rho     <- crossprod(VC$X4*c(d2l.rho.rho),    VC$X4)    
  
  

  H <- rbind( cbind( be1.be1     ,  be1.be2     ,  be1.sigma   , be1.rho   ), 
              cbind( t(be1.be2)  ,  be2.be2     ,  be2.sigma   , be2.rho   ), 
              cbind( t(be1.sigma),  t(be2.sigma),  sigma.sigma , sigma.rho ),
              cbind( t(be1.rho)  ,  t(be2.rho)  ,  t(sigma.rho), rho.rho   ) 
             )  
            
   
  G   <- -c( colSums(      c(dl.dbe1)*VC$X1 ) ,
             colSums(      c(dl.dbe2)*VC$X2 ) ,
             colSums( c(dl.dsigma.st)*VC$X3 ) ,
             colSums(  c(dl.dteta.st)*VC$X4 ) )   
   
    
}




      res <- -sum(l.par)





 
if(VC$extra.regI == "pC") H <- regH(H, type = 1)
  
  S.h  <- ps$S.h  


  if( length(S.h) != 1){
  
  S.h1 <- 0.5*crossprod(params,S.h)%*%params
  S.h2 <- S.h%*%params
  
  } else S.h <- S.h1 <- S.h2 <- 0   
  
  S.res <- res
  res   <- S.res + S.h1
  G     <- G + S.h2
  H     <- H + S.h  
        
if(VC$extra.regI == "sED") H <- regH(H, type = 2)   
  
 
         list(value=res, gradient=G, hessian=H, S.h=S.h, S.h1=S.h1, S.h2=S.h2, l=S.res, l.par=l.par, ps = ps, etas = etas,
              eta1=eta1, eta2=eta2, etad=etad,
              dl.dbe1=dl.dbe1, dl.dbe2=dl.dbe2, dl.dsigma.st = dl.dsigma.st, dl.dteta.st = dl.dteta.st,
              BivD=VC$BivD,                             p1 = 1-p1, p2 = p2, pdf1 = pdf1, pdf2 = pdf2,          
	      	                    c.copula.be2 = c.copula.be2,
	      	                    c.copula.be1 = c.copula.be1,
              c.copula2.be1be2 = c.copula2.be1be2, theta.star = teta.st)      

}




     
KironmoyDas/KD-STAT0035-GMupdate documentation built on Feb. 15, 2021, 12:17 a.m.