#' Perform normal GWAS (genome-wide association studies) first, then perform SNP-set GWAS for relatively significant markers
#'
#' @param pheno Data frame where the first column is the line name (gid). The remaining columns should be a phenotype to test.
#' @param geno Data frame with the marker names in the first column. The second and third columns contain the chromosome and map position.
#' Columns 4 and higher contain the marker scores for each line, coded as [-1, 0, 1] = [aa, Aa, AA].
#' @param ZETA A list of covariance (relationship) matrix (K: \eqn{m \times m}) and its design matrix (Z: \eqn{n \times m}) of random effects.
#' Please set names of list "Z" and "K"! You can use more than one kernel matrix.
#' For example,
#'
#' ZETA = list(A = list(Z = Z.A, K = K.A), D = list(Z = Z.D, K = K.D))
#' \describe{
#' \item{Z.A, Z.D}{Design matrix (\eqn{n \times m}) for the random effects. So, in many cases, you can use the identity matrix.}
#' \item{K.A, K.D}{Different kernels which express some relationships between lines.}
#' }
#' For example, K.A is additive relationship matrix for the covariance between lines, and K.D is dominance relationship matrix.
#' @param package.MM The package name to be used when solving mixed-effects model. We only offer the following three packages:
#' "RAINBOWR", "MM4LMM" and "gaston". Default package is `gaston`.
#' See more details at \code{\link{EM3.general}}.
#' @param covariate A \eqn{n \times 1} vector or a \eqn{n \times p _ 1} matrix. You can insert continuous values, such as other traits or genotype score for special markers.
#' This argument is regarded as one of the fixed effects.
#' @param covariate.factor A \eqn{n \times p _ 2} dataframe. You should assign a factor vector for each column.
#' Then RGWAS changes this argument into model matrix, and this model matrix will be included in the model as fixed effects.
#' @param structure.matrix You can use structure matrix calculated by structure analysis when there are population structure.
#' You should not use this argument with n.PC > 0.
#' @param n.PC Number of principal components to include as fixed effects. Default is 0 (equals K model).
#' @param min.MAF Specifies the minimum minor allele frequency (MAF).
#' If a marker has a MAF less than min.MAF, it is assigned a zero score.
#' @param n.core Setting n.core > 1 will enable parallel execution on a machine with multiple cores.
#' This argument is not valid when `parallel.method = "furrr"`.
#' @param parallel.method Method for parallel computation. We offer three methods, "mclapply", "furrr", and "foreach".
#'
#' When `parallel.method = "mclapply"`, we utilize \code{\link[pbmcapply]{pbmclapply}} function in the `pbmcapply` package
#' with `count = TRUE` and \code{\link[parallel]{mclapply}} function in the `parallel` package with `count = FALSE`.
#'
#' When `parallel.method = "furrr"`, we utilize \code{\link[furrr]{future_map}} function in the `furrr` package.
#' With `count = TRUE`, we also utilize \code{\link[progressr]{progressor}} function in the `progressr` package to show the progress bar,
#' so please install the `progressr` package from github (\url{https://github.com/HenrikBengtsson/progressr}).
#' For `parallel.method = "furrr"`, you can perform multi-thread parallelization by
#' sharing memories, which results in saving your memory, but quite slower compared to `parallel.method = "mclapply"`.
#'
#' When `parallel.method = "foreach"`, we utilize \code{\link[foreach]{foreach}} function in the `foreach` package
#' with the utilization of \code{\link[parallel]{makeCluster}} function in `parallel` package,
#' and \code{\link[doParallel]{registerDoParallel}} function in `doParallel` package.
#' With `count = TRUE`, we also utilize \code{\link[utils]{setTxtProgressBar}} and
#' \code{\link[utils]{txtProgressBar}} functions in the `utils` package to show the progress bar.
#'
#' We recommend that you use the option `parallel.method = "mclapply"`, but for Windows users,
#' this parallelization method is not supported. So, if you are Windows user,
#' we recommend that you use the option `parallel.method = "foreach"`.
#' @param check.size This argument determines how many SNPs (around the SNP detected by normal GWAS) you will recalculate -log10(p).
#' @param check.gene.size This argument determines how many genes (around the genes detected by normal GWAS) you will recalculate -log10(p).
#' This argument is valid only when you assign "gene.set" argument.
#' @param kernel.percent This argument determines how many SNPs are detected by normal GWAS.
#' For example, when kernel.percent = 0.1, SNPs whose value of -log10(p) is in the top 0.1 percent are chosen as candidate for recalculation by SNP-set GWAS.
#' @param GWAS.res.first If you have already performed normal GWAS and have the result, you can skip performing normal GWAS.
#' @param P3D When P3D = TRUE, variance components are estimated by REML only once, without any markers in the model.
#' When P3D = FALSE, variance components are estimated by REML for each marker separately.
#' @param test.method.1 RGWAS supports two methods to test effects of each SNP-set for 1st GWAS.
#' \describe{
#' \item{"normal"}{Normal GWAS (default).}
#' \item{"score"}{Score test, much faster than LR, but sometimes overestimate -log10(p).}
#' }
#' @param test.method.2 RGWAS supports two methods to test effects of each SNP-set for 2nd GWAS.
#' \describe{
#' \item{"LR"}{Likelihood-ratio test, relatively slow, but accurate (default).}
#' \item{"score"}{Score test, much faster than LR, but sometimes overestimate -log10(p).}
#' }
#' @param kernel.method It determines how to calculate kernel. There are three methods.
#' \describe{
#' \item{"gaussian"}{It is the default method. Gaussian kernel is calculated by distance matrix.}
#' \item{"exponential"}{When this method is selected, exponential kernel is calculated by distance matrix.}
#' \item{"linear"}{When this method is selected, linear kernel is calculated by NOIA methods for additive GRM.}
#'}
#' So local genomic relation matrix is regarded as kernel.
#' @param kernel.h The hyper parameter for gaussian or exponential kernel.
#' If kernel.h = "tuned", this hyper parameter is calculated as the median of off-diagonals of distance matrix of genotype data.
#' @param haplotype If the number of lines of your data is large (maybe > 100), you should set haplotype = TRUE.
#' When haplotype = TRUE, haplotype-based kernel will be used for calculating -log10(p).
#' (So the dimension of this gram matrix will be smaller.)
#' The result won't be changed, but the time for the calculation will be shorter.
#' @param num.hap When haplotype = TRUE, you can set the number of haplotypes which you expect.
#' Then similar arrays are considered as the same haplotype, and then make kernel(K.SNP) whose dimension is num.hap x num.hap.
#' When num.hap = NULL (default), num.hap will be set as the maximum number which reflects the difference between lines.
#' @param test.effect.1 Effect of each marker to test for 1st GWAS. You can choose "test.effect" from "additive", "dominance" and "additive+dominance".
#' you can assign only one test effect for the 1st GWAS!
#' @param test.effect.2 Effect of each marker to test for 2nd GWAS. You can choose "test.effect" from "additive", "dominance" and "additive+dominance".
#' You also can choose more than one effect, for example, test.effect = c("additive", "aditive+dominance")
#' @param window.size.half This argument decides how many SNPs (around the SNP you want to test) are used to calculated K.SNP.
#' More precisely, the number of SNPs will be 2 * window.size.half + 1.
#' @param window.slide This argument determines how often you test markers. If window.slide = 1, every marker will be tested.
#' If you want to perform SNP set by bins, please set window.slide = 2 * window.size.half + 1.
#' @param chi0.mixture RAINBOWR assumes the deviance is considered to follow a x chisq(df = 0) + (1 - a) x chisq(df = r).
#' where r is the degree of freedom.
#' The argument chi0.mixture is a (0 <= a < 1), and default is 0.5.
#' @param gene.set If you have information of gene (or haplotype block), you can use it to perform kernel-based GWAS.
#' You should assign your gene information to gene.set in the form of a "data.frame" (whose dimension is (the number of gene) x 2).
#' In the first column, you should assign the gene name. And in the second column, you should assign the names of each marker,
#' which correspond to the marker names of "geno" argument.
#' @param map.gene.set Genotype map for `gene.set` (list of haplotype blocks).
#' This is a data.frame with the haplotype block (SNP-set, or gene-set) names in the first column.
#' The second and third columns contain the chromosome and map position for each block.
#' The forth column contains the cumulative map position for each block, which can be computed by \code{\link{cumsumPos}} function.
#' If this argument is NULL, the map will be constructed by \code{\link{genesetmap}} function after the SNP-set GWAS.
#' It will take some time, so you can reduce the computational time by assigning this argument beforehand.
#' @param weighting.center In kernel-based GWAS, weights according to the Gaussian distribution (centered on the tested SNP) are taken into account when calculating the kernel if Rainbow = TRUE.
#' If weighting.center = FALSE, weights are not taken into account.
#' @param weighting.other You can set other weights in addition to weighting.center. The length of this argument should be equal to the number of SNPs.
#' For example, you can assign SNP effects from the information of gene annotation.
#' @param sig.level Significance level for the threshold. The default is 0.05.
#' @param method.thres Method for detemining threshold of significance. "BH" and "Bonferroni are offered.
#' @param plot.qq.1 If TRUE, draw qq plot for normal GWAS.
#' @param plot.Manhattan.1 If TRUE, draw manhattan plot for normal GWAS.
#' @param plot.qq.2 If TRUE, draw qq plot for SNP-set GWAS.
#' @param plot.Manhattan.2 If TRUE, draw manhattan plot for SNP-set GWAS.
#' @param plot.method If this argument = 1, the default manhattan plot will be drawn.
#' If this argument = 2, the manhattan plot with axis based on Position (bp) will be drawn.
#' Also, this plot's color is changed by all chromosomes.
#' @param plot.col1 This argument determines the color of the manhattan plot.
#' You should substitute this argument as color vector whose length is 2.
#' plot.col1[1] for odd chromosomes and plot.col1[2] for even chromosomes
#' @param plot.col2 Color of the manhattan plot. color changes with chromosome and it starts from plot.col2 + 1
#' (so plot.col2 = 1 means color starts from red.)
#' @param plot.col3 Color of the points of manhattan plot which are added after the reestimation by SNP-set method.
#' You should substitute this argument as color vector whose length is 2.
#' plot.col3[1] for odd chromosomes and plot.col3[2] for even chromosomes.
#' @param plot.type This argument determines the type of the manhattan plot. See the help page of "plot".
#' @param plot.pch This argument determines the shape of the dot of the manhattan plot. See the help page of "plot".
#' @param saveName When drawing any plot, you can save plots in png format. In saveName, you should substitute the name you want to save.
#' When saveName = NULL, the plot is not saved.
#' @param main.qq.1 The title of qq plot for normal GWAS. If this argument is NULL, trait name is set as the title.
#' @param main.man.1 The title of manhattan plot for normal GWAS. If this argument is NULL, trait name is set as the title.
#' @param main.qq.2 The title of qq plot for SNP-set GWAS. If this argument is NULL, trait name is set as the title.
#' @param main.man.2 The title of manhattan plot for SNP-set GWAS. If this argument is NULL, trait name is set as the title.
#' @param plot.add.last If saveName is not NULL and this argument is TRUE, then you can add lines or dots to manhattan plots.
#' However, you should also write "dev.off()" after adding something.
#' @param optimizer The function used in the optimization process. We offer "optim", "optimx", and "nlminb" functions.
#' @param return.EMM.res When return.EMM.res = TRUE, the results of equation of mixed models are included in the result of RGWAS.
#' @param thres If thres = TRUE, the threshold of the manhattan plot is included in the result of RGWAS.
#' When return.EMM.res or thres is TRUE, the results will be "list" class.
#' @param skip.check As default, RAINBOWR checks the type of input data and modifies it into the correct format.
#' However, it will take some time, so if you prepare the correct format of input data, you can skip this procedure
#' by setting `skip.check = TRUE`.
#' @param verbose If this argument is TRUE, messages for the current steps will be shown.
#' @param verbose2 If this argument is TRUE, welcome message will be shown.
#' @param count When count is TRUE, you can know how far RGWAS has ended with percent display.
#' @param time When time is TRUE, you can know how much time it took to perform RGWAS.
#'
#'
#' @return
#' \describe{
#' \item{$D}{Dataframe which contains the information of the map you input and the results of RGWAS (-log10(p)) which correspond to the map.
#' -log10(p) by normal GWAS and recalculated -log10(p) by SNP-set GWAS will be obtained.
#' If there are more than one test.effects, then multiple lists for each test.effect are returned respectively.
#' }
#' \item{$thres}{A vector which contains the information of threshold determined by FDR = 0.05.}
#' \item{$EMM.res}{This output is a list which contains the information about the results of "EMM" perfomed at first in normal GWAS.
#' If you want to know details, see the description for the function "EMM1" or "EMM2".}
#' }
#'
#'
#' @references
#' Kennedy, B.W., Quinton, M. and van Arendonk, J.A. (1992) Estimation of effects of single genes on quantitative traits. J Anim Sci. 70(7): 2000-2012.
#'
#' Storey, J.D. and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci. 100(16): 9440-9445.
#'
#' Yu, J. et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 38(2): 203-208.
#'
#' Kang, H.M. et al. (2008) Efficient Control of Population Structure in Model Organism Association Mapping. Genetics. 178(3): 1709-1723.
#'
#' Kang, H.M. et al. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 42(4): 348-354.
#'
#' Zhang, Z. et al. (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 42(4): 355-360.
#'
#' Endelman, J.B. (2011) Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. Plant Genome J. 4(3): 250.
#'
#' Endelman, J.B. and Jannink, J.L. (2012) Shrinkage Estimation of the Realized Relationship Matrix. G3 Genes, Genomes, Genet. 2(11): 1405-1413.
#'
#' Zhou, X. and Stephens, M. (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 44(7): 821-824.
#'
#' Listgarten, J. et al. (2013) A powerful and efficient set test for genetic markers that handles confounders. Bioinformatics. 29(12): 1526-1533.
#'
#' Lippert, C. et al. (2014) Greater power and computational efficiency for kernel-based association testing of sets of genetic variants. Bioinformatics. 30(22): 3206-3214.
#'
#'
#' @example R/examples/RGWAS.twostep_example.R
#'
#'
#'
RGWAS.twostep <- function(pheno, geno, ZETA = NULL, package.MM = "gaston",
covariate = NULL, covariate.factor = NULL,
structure.matrix = NULL, n.PC = 0, min.MAF = 0.02,
n.core = 1, parallel.method = "mclapply",
check.size = 40, check.gene.size = 4, kernel.percent = 0.1, GWAS.res.first = NULL,
P3D = TRUE, test.method.1 = "normal", test.method.2 = "LR",
kernel.method = "linear", kernel.h = "tuned", haplotype = TRUE,
num.hap = NULL, test.effect.1 = "additive", test.effect.2 = "additive",
window.size.half = 5, window.slide = 1, chi0.mixture = 0.5, optimizer = "nlminb",
gene.set = NULL, map.gene.set = NULL,
weighting.center = TRUE, weighting.other = NULL,
sig.level = 0.05, method.thres = "BH", plot.qq.1 = TRUE, plot.Manhattan.1 = TRUE,
plot.qq.2 = TRUE, plot.Manhattan.2 = TRUE, plot.method = 1,
plot.col1 = c("dark blue", "cornflowerblue"), plot.col2 = 1,
plot.col3 = c("red3", "orange3"), plot.type = "p",
plot.pch = 16, saveName = NULL, main.qq.1 = NULL,
main.man.1 = NULL, main.qq.2 = NULL, main.man.2 = NULL,
plot.add.last = FALSE, return.EMM.res = FALSE,
thres = TRUE, skip.check = FALSE, verbose = TRUE,
verbose2 = FALSE, count = TRUE, time = TRUE) {
start <- Sys.time()
if (is.null(GWAS.res.first)) {
if (verbose) {
print("The 1st step: Performing 1st GWAS (for screening)!")
}
if (length(test.effect.1) >= 2) {
stop("Sorry, you can assign only one test effect for the 1st GWAS!!")
}
if (test.method.1 == "normal") {
GWAS.res.first <- RGWAS.normal(pheno = pheno, geno = geno, ZETA = ZETA,
package.MM = package.MM, covariate = covariate,
covariate.factor = covariate.factor,
structure.matrix = structure.matrix, n.PC = n.PC,
min.MAF = min.MAF, P3D = P3D, n.core = n.core,
parallel.method = parallel.method, sig.level = sig.level,
method.thres = method.thres, plot.qq = plot.qq.1,
plot.Manhattan = plot.Manhattan.1, plot.method = plot.method,
plot.col1 = plot.col1, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch, saveName = saveName,
optimizer = optimizer, main.qq = main.qq.1, main.man = main.man.1,
plot.add.last = FALSE, return.EMM.res = FALSE, thres = FALSE,
skip.check = skip.check, verbose = verbose,
verbose2 = verbose2, count = count, time = time)
} else {
GWAS.res.first <- RGWAS.multisnp(pheno = pheno, geno = geno, ZETA = ZETA,
package.MM = package.MM, covariate = covariate,
covariate.factor = covariate.factor,
structure.matrix = structure.matrix,
n.PC = n.PC, min.MAF = min.MAF,
test.method = test.method.1,
n.core = n.core, parallel.method = parallel.method,
kernel.method = kernel.method, kernel.h = kernel.h,
haplotype = haplotype, num.hap = num.hap,
test.effect = test.effect.1, window.size.half = window.size.half,
window.slide = window.slide, chi0.mixture = chi0.mixture,
gene.set = gene.set, map.gene.set = map.gene.set,
weighting.center = weighting.center,
weighting.other = weighting.other, sig.level = sig.level,
method.thres = method.thres, plot.qq = FALSE,
plot.Manhattan = FALSE, plot.method = plot.method,
plot.col1 = plot.col1, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch, saveName = saveName,
main.qq = main.qq.2, main.man = main.man.2, plot.add.last = FALSE,
return.EMM.res = FALSE, optimizer = optimizer,
thres = FALSE, skip.check = skip.check, verbose = verbose,
verbose2 = verbose2, count = count, time = time)
}
} else {
if (verbose) {
print("The 1st step has already finished because you input 'GWAS.res.first'.")
}
}
n.pheno <- ncol(GWAS.res.first) - 3
trait.names <- colnames(GWAS.res.first)[4:(4 + n.pheno - 1)]
map <- geno[, 1:3]
if ((kernel.method == "linear") & (length(test.effect.2) >= 2)) {
thresholds <- matrix(NA, nrow = length(test.effect.2), ncol = n.pheno)
thresholds.correction <- matrix(NA, nrow = length(test.effect.2), ncol = n.pheno)
rownames(thresholds) <- rep("normal", length(test.effect.2))
rownames(thresholds.correction) <- test.effect.2
colnames(thresholds) <- colnames(thresholds.correction) <- trait.names
} else {
thresholds <- thresholds.correction <- matrix(NA, nrow = 1, ncol = n.pheno)
rownames(thresholds) <- "normal"
rownames(thresholds.correction) <- kernel.method
colnames(thresholds) <- colnames(thresholds.correction) <- trait.names
}
if ((kernel.method == "linear") & (length(test.effect.2) >= 2)) {
res.all <- rep(list(GWAS.res.first), length(test.effect.2))
} else {
res.all <- GWAS.res.first
}
for (pheno.no in 1:n.pheno) {
trait.name <- trait.names[pheno.no]
pheno.now <- pheno[, c(1, pheno.no + 1)]
GWAS.res.first.now <- GWAS.res.first[, c(1:3, pheno.no + 3)]
pval.first <- GWAS.res.first[, pheno.no + 3]
ord.pval.first <- order(pval.first, decreasing = TRUE)
ord.pval.ker.percent.0 <- ord.pval.first[1:round(length(pval.first) * (kernel.percent / 100), 0)]
ord.pval.ker.percent <- as.numeric(rownames(GWAS.res.first)[ord.pval.ker.percent.0])
if (is.null(gene.set)) {
check.obj <- "SNPs"
check.size.half <- check.size / 2
checks.mat <- matrix(NA, nrow = length(ord.pval.ker.percent) * (check.size + 1), ncol = length(ord.pval.ker.percent))
for (check.no in 1:length(ord.pval.ker.percent)) {
check <- sort(ord.pval.ker.percent)[check.no]
checks.now <- (check - check.size.half):(check + check.size.half)
checks.mat[, check.no] <- checks.now
}
checks <- unique(c(checks.mat))
checks <- checks[(checks >= 1) & (checks <= max(as.numeric(rownames(GWAS.res.first))))]
n.checks <- length(checks)
pseudo.chr <- rep(NA, n.checks)
pseudo.chr[1] <- 1
for (k in 2:n.checks) {
pseudo.chr.now <- pseudo.chr[k - 1]
check.diff <- checks[k] - checks[k - 1]
if (check.diff == 1) {
pseudo.chr[k] <- pseudo.chr.now
} else {
pseudo.chr[k] <- pseudo.chr.now + 1
}
}
pseudo.marker <- as.character(map[checks, 1])
pseudo.pos <- map[checks, 3]
pseudo.map <- data.frame(marker = pseudo.marker, chr = pseudo.chr,
pos = pseudo.pos)
rownames(pseudo.map) <- checks
M.check <- geno[checks, -c(1:3)]
geno.check <- cbind(pseudo.map, M.check)
gene.set.now <- NULL
} else {
check.obj <- "genes"
if (test.method.1 != "normal") {
check.size.half <- check.gene.size / 2
checks.mat <- matrix(NA, nrow = length(ord.pval.ker.percent) * (check.gene.size + 1), ncol = length(ord.pval.ker.percent))
for (check.no in 1:length(ord.pval.ker.percent)) {
check <- sort(ord.pval.ker.percent)[check.no]
checks.now <- (check - check.size.half):(check + check.size.half)
checks.mat[, check.no] <- checks.now
}
checks <- unique(c(checks.mat))
checks <- checks[(checks >= 1) & (checks <= max(as.numeric(rownames(GWAS.res.first))))]
n.checks <- length(checks)
gene.names <- as.character(unique(gene.set[, 1]))
gene.names.now <- gene.names[checks]
} else {
check.size.half <- check.size / 2
checks.mat <- matrix(NA, nrow = length(ord.pval.ker.percent) * (check.size + 1), ncol = length(ord.pval.ker.percent))
for (check.no in 1:length(ord.pval.ker.percent)) {
check <- sort(ord.pval.ker.percent)[check.no]
checks.now <- (check - check.size.half):(check + check.size.half)
checks.mat[, check.no] <- checks.now
}
checks <- unique(c(checks.mat))
checks <- checks[(checks >= 1) & (checks <= max(as.numeric(rownames(GWAS.res.first))))]
match.gene.list <- match(as.character(gene.set[, 2]), as.character(map[checks, 1]))
gene.names.now <- unique(as.character(gene.set[!is.na(match.gene.list), 1]))
n.checks <- length(gene.names.now)
}
gene.set.now <- gene.set[as.character(gene.set[, 1]) %in% gene.names.now, ]
geno.check <- geno
}
if (verbose) {
print(paste("The 2nd step: Recalculating -log10(p) of", trait.name, "for", n.checks, check.obj, "by kernel-based (mutisnp) GWAS."))
}
RGWAS.multisnp.res.0 <- RGWAS.multisnp(pheno = pheno.now, geno = geno.check,
ZETA = ZETA, package.MM = package.MM,
covariate = covariate, covariate.factor = covariate.factor,
structure.matrix = structure.matrix, n.PC = n.PC,
min.MAF = min.MAF, test.method = test.method.2,
n.core = n.core, parallel.method = parallel.method,
kernel.method = kernel.method, kernel.h = kernel.h,
haplotype = haplotype, num.hap = num.hap,
test.effect = test.effect.2, window.size.half = window.size.half,
window.slide = window.slide, chi0.mixture = chi0.mixture,
gene.set = gene.set.now, map.gene.set = NULL,
weighting.center = weighting.center,
weighting.other = weighting.other, sig.level = sig.level,
method.thres = method.thres, plot.qq = FALSE, plot.Manhattan = FALSE,
plot.method = plot.method, plot.col1 = plot.col1,
plot.col2 = plot.col2, plot.type = plot.type,
plot.pch = plot.pch, saveName = saveName,
main.qq = main.qq.2, main.man = main.man.2,
plot.add.last = FALSE, return.EMM.res = TRUE,
optimizer = optimizer, thres = FALSE, skip.check = TRUE,
verbose = verbose, verbose2 = FALSE, count = count, time = time)
RGWAS.multisnp.res <- RGWAS.multisnp.res.0$D
EMM.res0 <- RGWAS.multisnp.res.0$EMM.res
if ((kernel.method == "linear") & (length(test.effect.2) >= 2)) {
GWAS.res.merge.list <- lapply(RGWAS.multisnp.res, function(x) {
colnames(x) <- colnames(GWAS.res.first.now)
if (is.null(gene.set)) {
x[, 1:3] <- map[match(rownames(x), rownames(map)), ]
}
GWAS.res.merge.0 <- rbind(x, GWAS.res.first.now)
GWAS.res.merge <- GWAS.res.merge.0[!duplicated(as.character(GWAS.res.merge.0[, 1])), ]
ord.GWAS.res.merge <- order(GWAS.res.merge[, 2], GWAS.res.merge[, 3])
res.correction <- GWAS.res.merge[ord.GWAS.res.merge, ]
check.here <- match(1:nrow(x), ord.GWAS.res.merge)
return(list(res = res.correction, check = check.here))
})
res.corrections <- rep(list(NA), length(test.effect.2))
for (test.effect.no in 1:length(test.effect.2)) {
res.correction <- (GWAS.res.merge.list[[test.effect.no]])[[1]]
res.corrections[[test.effect.no]] <- res.correction
check.here <- (GWAS.res.merge.list[[test.effect.no]])[[2]]
pval.correction <- res.correction[, 4]
if (plot.qq.2) {
if (verbose) {
print("Now Plotting (Q-Q plot). Please Wait.")
}
if (is.null(saveName)) {
if (length(grep("RStudio", names(dev.cur()))) == 0) {
if (dev.cur() == dev.next()) {
dev.new()
}
else {
dev.set(dev.next())
}
}
qq(pval.correction)
if (is.null(main.qq.2)) {
title(main = trait.name)
} else {
title(main = main.qq.2)
}
} else {
png(paste0(saveName, trait.name, "_qq_kernel.png"))
qq(pval.correction)
if (is.null(main.qq.2)) {
title(main = trait.name)
} else {
title(main = main.qq.2)
}
dev.off()
}
}
if (plot.Manhattan.2) {
if (verbose) {
print("Now Plotting (Manhattan plot). Please Wait.")
}
if (is.null(saveName)) {
if (length(grep("RStudio", names(dev.cur()))) == 0) {
if (dev.cur() == dev.next()) {
dev.new()
}
else {
dev.set(dev.next())
}
}
if (plot.method == 1) {
manhattan(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col1 = plot.col1,
plot.type = plot.type, plot.pch = plot.pch)
if (!is.null(plot.col3)) {
manhattan.plus(input = res.correction, checks = check.here,
plot.col1 = plot.col1, plot.col3 = plot.col3,
plot.type = plot.type, plot.pch = plot.pch)
}
} else {
manhattan2(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch)
}
if (is.null(main.man.2)) {
title(main = trait.name)
} else {
title(main = main.man.2)
}
} else {
png(paste0(saveName, trait.name, "_manhattan_kernel.png"), width = 800)
if (plot.method == 1) {
manhattan(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col1 = plot.col1,
plot.type = plot.type, plot.pch = plot.pch)
if (!is.null(plot.col3)) {
manhattan.plus(input = res.correction, checks = check.here,
plot.col1 = plot.col1, plot.col3 = plot.col3,
plot.type = plot.type, plot.pch = plot.pch)
}
} else {
manhattan2(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch)
}
if (is.null(main.man.2)) {
title(main = trait.name)
} else {
title(main = main.man.2)
}
if (!(plot.add.last & (pheno.no == n.pheno))) {
dev.off()
}
}
}
threshold <- try(CalcThreshold(GWAS.res.first.now, sig.level = sig.level, method = method.thres), silent = TRUE)
threshold.correction <- try(CalcThreshold(res.correction, sig.level = sig.level, method = method.thres), silent = TRUE)
if ("try-error" %in% class(threshold)) {
threshold <- NA
}
if ("try-error" %in% class(threshold.correction)) {
threshold.correction <- NA
}
thresholds[test.effect.no, pheno.no] <- threshold
thresholds.correction[test.effect.no, pheno.no] <- threshold.correction
}
for (test.effect.no in 1:length(test.effect.2)) {
colnames(res.corrections[[test.effect.no]])[1:3] <-
colnames(res.all[[test.effect.no]])[1:3] <- c("marker", "chrom", "pos")
res.all[[test.effect.no]] <- merge(res.all[[test.effect.no]],
res.corrections[[test.effect.no]],
by.x = c("marker", "chrom", "pos"),
by.y = c("marker", "chrom", "pos"),
all.x = T, all.y = T)
colnames(res.all[[test.effect.no]])[ncol(res.all[[test.effect.no]])] <-
paste0(trait.name, "_correction")
res.all[[test.effect.no]] <- (res.all[[test.effect.no]])[order(res.all[[test.effect.no]][, 2],
res.all[[test.effect.no]][, 3]), ]
}
} else {
colnames(RGWAS.multisnp.res) <- colnames(GWAS.res.first.now)
if (is.null(gene.set)) {
RGWAS.multisnp.res[, 1:3] <- map[match(rownames(RGWAS.multisnp.res), rownames(map)), ]
}
GWAS.res.merge.0 <- rbind(RGWAS.multisnp.res, GWAS.res.first.now)
GWAS.res.merge <- GWAS.res.merge.0[!duplicated(as.character(GWAS.res.merge.0[, 1])), ]
ord.GWAS.res.merge <- order(GWAS.res.merge[, 2], GWAS.res.merge[, 3])
res.correction <- GWAS.res.merge[ord.GWAS.res.merge, ]
check.here <- match(1:nrow(RGWAS.multisnp.res), ord.GWAS.res.merge)
pval.correction <- res.correction[, 4]
if (plot.qq.2) {
if (verbose) {
print("Now Plotting (Q-Q plot). Please Wait.")
}
if (is.null(saveName)) {
if (length(grep("RStudio", names(dev.cur()))) == 0) {
if (dev.cur() == dev.next()) {
dev.new()
} else {
dev.set(dev.next())
}
}
qq(pval.correction)
if (is.null(main.qq.2)) {
title(main = trait.name)
} else {
title(main = main.qq.2)
}
} else {
png(paste0(saveName, trait.name, "_qq_kernel.png"))
qq(pval.correction)
if (is.null(main.qq.2)) {
title(main = trait.name)
} else {
title(main = main.qq.2)
}
dev.off()
}
}
if (plot.Manhattan.2) {
if (verbose) {
print("Now Plotting (Manhattan plot). Please Wait.")
}
if (is.null(saveName)) {
if (length(grep("RStudio", names(dev.cur()))) == 0) {
if (dev.cur() == dev.next()) {
dev.new()
} else {
dev.set(dev.next())
}
}
if (plot.method == 1) {
manhattan(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col1 = plot.col1,
plot.type = plot.type, plot.pch = plot.pch)
if (!is.null(plot.col3)) {
manhattan.plus(input = res.correction, checks = check.here,
plot.col1 = plot.col1, plot.col3 = plot.col3,
plot.type = plot.type, plot.pch = plot.pch)
}
} else {
manhattan2(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch)
}
if (is.null(main.man.2)) {
title(main = trait.name)
} else {
title(main = main.man.2)
}
} else {
png(paste0(saveName, trait.name, "_manhattan_kernel.png"), width = 800)
if (plot.method == 1) {
manhattan(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col1 = plot.col1,
plot.type = plot.type, plot.pch = plot.pch)
if (!is.null(plot.col3)) {
manhattan.plus(input = res.correction, checks = check.here,
plot.col1 = plot.col1, plot.col3 = plot.col3,
plot.type = plot.type, plot.pch = plot.pch)
}
} else {
manhattan2(input = res.correction, sig.level = sig.level, method.thres = method.thres, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch)
}
if (is.null(main.man.2)) {
title(main = trait.name)
} else {
title(main = main.man.2)
}
if (!(plot.add.last & (pheno.no == n.pheno))) {
dev.off()
}
}
}
threshold <- try(CalcThreshold(GWAS.res.first[, c(1:3, pheno.no + 3)], sig.level = sig.level, method = method.thres), silent = TRUE)
threshold.correction <- try(CalcThreshold(res.correction, sig.level = sig.level, method= method.thres), silent = TRUE)
if ("try-error" %in% class(threshold)) {
threshold <- NA
}
if ("try-error" %in% class(threshold.correction)) {
threshold.correction <- NA
}
thresholds[, pheno.no] <- threshold
thresholds.correction[, pheno.no] <- threshold.correction
colnames(res.correction)[1:3] <- colnames(res.all)[1:3] <- c("marker", "chrom", "pos")
res.all <- merge(res.all, res.correction, by.x = c("marker", "chrom", "pos"),
by.y = c("marker", "chrom", "pos"), all.x = T, all.y = T)
colnames(res.all)[ncol(res.all)] <- paste0(trait.name, "_correction")
res.all <- res.all[order(res.all[, 2], res.all[, 3]), ]
}
}
thresholds.list <- list(first = thresholds, second = thresholds.correction)
if (thres) {
end <- Sys.time()
if (time) {
print(end - start)
}
if (return.EMM.res) {
return(list(D = res.all, thres = thresholds.list,
EMM.res = EMM.res0))
} else {
return(list(D = res.all, thres = thresholds.list))
}
} else {
end <- Sys.time()
if (time) {
print(end - start)
}
if (return.EMM.res) {
return(list(D = res.all, EMM.res = EMM.res0))
} else {
return(res.all)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.