linearRegr | R Documentation |
Creates a linear model between a mRNA or miRNA of choice and a selection of it's filtered binding partners. The model is based on the users design.
linearRegr(mreg, colselect, colpair, alterpairs)
mreg |
Matrix generated from the multiReg function. This should be found as an assay within the MAE used during the multiReg function. |
colselect |
Column from mreg which contain the gene of interest. Default is 2. |
colpair |
Column of binding parter of the gene of interest. Default is 3. If NANs are found, test alternative formulas. |
alterpairs |
Column(s) of other binding partners of the gene of interest. This can include any numer of columns. If NANs are found, test alternative formulas. e.g. = 4:7, c(4, 6, 8), 4. |
A linear regression model which represents miRNA-mRNA interaction(s) which can be further explored.
library(org.Mm.eg.db)
miR <- mm_miR[1:100,]
mRNA <- mm_mRNA[1:200,]
MAE <- startObject(miR = miR, mRNA = mRNA)
MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')
MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus', orgDB = org.Mm.eg.db)
MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
genes_ID = assay(MAE, 3),
idColumn = 'GENENAME',
name = "miRNA_log2fc")
MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
genes_ID = assay(MAE, 7),
idColumn = 'GENENAME',
name = "mRNA_log2fc")
Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
"mmu-miR-146a-5p:Acy1"),
corr = c(-0.9191653, -0.7826041),
miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
mRNA = c("Adamts15", "Acy1"),
miR_Entrez = c(387163, NA),
mRNA_Entrez = c(235130, 109652),
TargetScan = c(1, 0),
miRDB = c(0, 0),
Predicted_Interactions = c(1, 0),
miRTarBase = c(0, 1),
Pred_Fun = c(1, 1))
MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
threshold = 1, predictedOnly = FALSE)
MAE <- multiReg(MAE = MAE, gene_interest = "Adamts15",
mRNAreg =TRUE, filt_df=MAE[[11]], miRNA_exp=MAE[[9]],
mRNA_exp=MAE[[10]])
model1 <- linearRegr(mreg = MAE[[12]], colselect =2, colpair =3)
summary(model1$regression)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.