quickTCPred | R Documentation |
Creates a regression plot over the time course, which compares data and a simulation which was predicted using the data. Data is based on the model formula used in the multiReg function and linearRegr function. R.squared and p value are also calculated and pasted into the plot.
quickTCPred(model, reg_df)
model |
Linear model which was generated by the linearRegr function. |
reg_df |
Matrix/assay which which was generated by the multiReg function. Should be in the MAE used during the multiReg function. |
A linear regression plot with data and a simulation.
library(org.Mm.eg.db)
miR <- mm_miR[1:50,]
mRNA <- mm_mRNA[1:100,]
MAE <- startObject(miR = miR, mRNA = mRNA)
MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')
MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus', orgDB = org.Mm.eg.db)
MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
genes_ID = assay(MAE, 3),
idColumn = 'GENENAME',
name = "miRNA_log2fc")
MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
genes_ID = assay(MAE, 7),
idColumn = 'GENENAME',
name = "mRNA_log2fc")
Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
"mmu-miR-146a-5p:Acy1"),
corr = c(-0.9191653, 0.7826041),
miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
mRNA = c("Adamts15", "Acy1"),
miR_Entrez = c(387163, NA),
mRNA_Entrez = c(235130, 109652),
TargetScan = c(1, 0),
miRDB = c(0, 0),
Predicted_Interactions = c(1, 0),
miRTarBase = c(0, 1),
Pred_Fun = c(1, 1))
MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
threshold = 1, predictedOnly = FALSE)
MAE <- multiReg(MAE = MAE, gene_interest = "Adamts15",
mRNAreg =TRUE, filt_df=MAE[[11]], miRNA_exp=MAE[[9]],
mRNA_exp=MAE[[10]])
model1 <- linearRegr(mreg = MAE[[12]], colselect =2, colpair =3)
summary(model1$regression)
quickTCPred(model = model1, reg_df = MAE[[12]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.