#' Read \code{toc} measurements from RRD database and return as an \code{tbl_SQLiteConnection}.
#'
#' This function does not actually fetch the data,
#' but returns an \code{tbl_SQLiteConnection} object which can be further processed / filtered
#' using \code{dplyr}.
#' See \link{https://db.rstudio.com/r-packages/dplyr/} for details.
#' To fetch the actual data, execute \code{collect()}.
#' @param db fully qualified path to the sqlite database. Default, read from option \code{RRDdb}.
#' If not set, defaults to option \code{RRDdb}; if this is not set, defaults to \code{LEEF.RRD.sqlite}
#' @param from_timestamp \code{integer}. Earliest timestamp to return. Default: \code{20210920}
#' @param to_timestamp \code{integer}. Latest timestamp to return. Default: \code{21000101}
#' @param duplicates function which will be used to combine duplicates. If \code{NULL}, co summarising is done.
#' Default is `mean`.
#'
#' @return Link to the table \code{density} in the RRD to be used with \code{dplyr} and friends
#'
#' @importFrom DBI dbConnect
#' @importFrom RSQLite SQLite SQLITE_RO
#' @importFrom dplyr tbl ungroup group_by summarise
#'
#' @export
#'
#' @examples
db_read_toc <- function(
db = getOption("RRDdb", "LEEF.RRD.sqlite"),
from_timestamp = 20210920,
to_timestamp = 21000101,
duplicates = mean
) {
con <- DBI::dbConnect(RSQLite::SQLite(), db, flags = RSQLite::SQLITE_RO)
data <- con %>%
dplyr::tbl("toc") %>%
filter(as.integer(timestamp) >= as.integer(from_timestamp)) %>%
filter(as.integer(timestamp) <= as.integer(to_timestamp))
if (!is.null(duplicates)) {
result <- NULL
try(
{
## LEEF-1
result <- data %>%
group_by(timestamp, day, type, bottle, temperature, richness, composition, incubator) %>%
summarise(concentration = mean(concentration), cv = as.numeric(NA), n = n()) %>%
ungroup()
},
silent = TRUE
)
if (is.null(result)) {
## LEEF-2
result <- data %>%
group_by(timestamp, day, bottle, type, temperature, salinity, resources, incubator, replicate) %>%
summarise(concentration = mean(concentration), cv = as.numeric(NA), n = n()) %>%
ungroup()
}
data <- result
}
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.