runScnSet | R Documentation |
Define scenarios in a table and simulateObservations()
, run the
caribouBayesianPM()
model and getOutputTables()
for each scenario.
runScnSet(
scns,
ePars,
simNational,
survAnalysisMethod = "Binomial",
getKSDists = TRUE,
printProgress = FALSE,
Niter = formals(caribouBayesianPM)$Niter,
Nburn = formals(caribouBayesianPM)$Nburn
)
scns |
data.frame. Parameters for the simulations. See
|
ePars |
list. Additional parameters passed on to
|
simNational |
National simulation results, produced by calling
|
survAnalysisMethod |
Survival analysis method either "KaplanMeier" or "Binomial". The KaplanMeier method yields slightly biased survival estimates. |
getKSDists |
logical. Should Kolmogorov–Smirnov distances be calculated? |
printProgress |
logical. Should the scenario number and parameters be printed at each step? |
Niter |
Number of iterations for the MCMC algorithm. |
Nburn |
Length of burn-in for the MCMC algorithm. |
A list similar to getOutputTables()
where tables for each scenario
have been appended together. Plus an error log for any scenarios that
failed to run.
Caribou demography functions:
caribouBayesianPM()
,
caribouPopGrowth()
,
compositionBiasCorrection()
,
demographicCoefficients()
,
demographicProjectionApp()
,
demographicRates()
,
getOutputTables()
,
getPriors()
,
getScenarioDefaults()
,
getSimsNational()
,
plotRes()
,
popGrowthTableJohnsonECCC
,
simulateObservations()
scns <- expand.grid(
obsYears =c(10, 20), collarCount = c(30, 300), cowMult = 2, collarInterval = 2,
assessmentYrs = 1, iAnthro = 0,
obsAnthroSlope = 0, projAnthroSlope = 0, sQuantile = 0.9,
rQuantile = 0.7, N0 = 1000
)
eParsIn <- list(collarOnTime = 1, collarOffTime = 12, collarNumYears = 3)
scResults <- runScnSet(scns, eParsIn, getSimsNational(), getKSDists = FALSE,
# only set to speed up example. Normally keep defaults.
Niter = 10, Nburn = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.