ns <- 2*c( 5000, 250, 500, 2500, 1000)
library(future)
library(future.apply)
plan(multiprocess)
true <- 1
output <- future_lapply(ns, function(n) {
passes <- c()
all_coefs<- c()
for(i in 1:250){
library(MASS)
X <- MASS::mvrnorm(n = n,
mu = c(0, 0 ),
Sigma = rbind(0.5*c(1, 0.5 ),
c(0.5, 1 )
))
W1 <- bound(X[,1], c(-1.5,1.5))
W2 <- bound(X[,2], c(-1.5,1.5))
A <- rbinom(n, size = 1, plogis(0.75*(X %*% c(1,-1 ) )))
Tvar <- rweibull(n,shape = 3, scale = 1/exp(0.1 * (W1 + W2 - 0.5)))
Tcenter <- Tvar-1
Q <- plogis( A * (1 + Tcenter) + 0.4*((1+W1)^2/3 - (1+W2)^2/3 + (1 + Tcenter)^2/3 + 2*(W1 + W1*(W1>=0)) *(-W2 + W2*(W2>=0)) + Tcenter*(W1 + W2)))
J <- rbinom(n, 1, Q )
R <- rbinom(n, size = 1, prob = plogis(0.5*(W1 + W2 + A - 1 + Tcenter)))
R <- 1
data <- data.frame(W1, W2, A, Tcenter, J, R)
data <- data[data$R==1,]
A <- data$A
Y <- data$J
W <- as.matrix(data[,c("Tcenter", "W1", "W2")])
library(future)
plan(multisession)
library(causalglm)
task_A <- sl3_Task$new(data, covariates = c("Tcenter", "W1", "W2"), outcome = "A")
task_Y <- sl3_Task$new(data, covariates = c("Tcenter", "W1", "W2", "A"), outcome = "J")
data1 <- data
data1$A <- 1
data0 <- data
data0$A <- 0
task_Y0 <- sl3_Task$new(data0, covariates = c("Tcenter", "W1", "W2", "A"), outcome = "J")
task_Y1 <- sl3_Task$new(data1, covariates = c("Tcenter", "W1", "W2", "A"), outcome = "J")
lrnr_sp <- Stack$new(
Lrnr_glm_semiparametric$new(~ 1 + Tcenter, lrnr_baseline = Lrnr_glm$new(), append_interaction_matrix = TRUE, family = binomial()),
Lrnr_glm_semiparametric$new(~ 1 + Tcenter, lrnr_baseline = Lrnr_glmnet$new(), append_interaction_matrix = TRUE, family = binomial()),
Lrnr_glm_semiparametric$new(~ 1 + Tcenter, lrnr_baseline = Lrnr_gam$new(), append_interaction_matrix = TRUE, family = binomial()),
Lrnr_glm_semiparametric$new(~ 1 + Tcenter, lrnr_baseline = Lrnr_earth$new(), append_interaction_matrix = FALSE, family = binomial()),
Lrnr_glm_semiparametric$new(~ 1 + Tcenter, lrnr_baseline = Lrnr_xgboost$new(max_depth = 4), append_interaction_matrix = FALSE, family = binomial()),
Lrnr_glm_semiparametric$new(~ 1 + Tcenter, lrnr_baseline = Lrnr_xgboost$new(max_depth = 5), append_interaction_matrix = FALSE, family = binomial())
)
lrnr_sp <- make_learner(Pipeline, Lrnr_cv$new(lrnr_sp), Lrnr_cv_selector$new(loss_loglik_binomial))
lrnr_sp <- delayed_learner_train(lrnr_sp, task_Y)
lrnr_sp <- lrnr_sp$compute()
EY1 <- lrnr_sp$predict(task_Y1)
EY0 <- lrnr_sp$predict(task_Y0)
lrnr_A <- Stack$new(
Lrnr_glmnet$new(),
Lrnr_gam$new(),
Lrnr_earth$new(),
Lrnr_xgboost$new(max_depth = 3 ),
Lrnr_xgboost$new(max_depth = 4 ),
Lrnr_xgboost$new(max_depth = 5 )
)
lrnr_A <- make_learner(Pipeline, Lrnr_cv$new(lrnr_A, full_fit = TRUE), Lrnr_cv_selector$new(loss_loglik_binomial))
lrnr_A <- delayed_learner_train(lrnr_A, task_A)
lrnr_A <- lrnr_A$compute()
pA1 <- pmin(pmax(lrnr_A$predict(task_A), 0.005), 1-0.005)
# spout <- spglm( formula = ~1 + Tcenter, W = c("Tcenter", "W1", "W2"), A = "A", Y = "J", data = data, estimand = "OR", sl3_Learner_A = lrnr_A, sl3_Learner_Y = lrnr_Y, append_interaction_matrix = TRUE )
spout <- spOR(formula = ~1 + Tcenter, W = c("Tcenter", "W1", "W2"), A = "A", Y = "J", data = data, EY1, EY0, pA1)
# doMC::registerDoMC(cores = 11)
# spout <- spOR(formula = ~1 + Tcenter, W, A, Y, data = data, Delta = NULL, sl3_learner_A = Lrnr_hal9001$new(max_degree = 2, num_knots = c(10,8), fit_control = list(parallel = TRUE)), smoothness_order_Y0W = 1, max_degree_Y0W = 2, num_knots_Y0W = c(10, 8),fit_control = list(parallel = TRUE))
pout <- glm(J~ W1 + W2 + A * (1 + Tcenter) + Tcenter , family = binomial, data = data)
true <- c(1,1)
coefs<-spout$coefs
print(coefs[,1])
lower <- coefs[,4]
upper <- coefs[,5]
print("ci width sp")
print(upper - lower)
pass <- lower <= true & upper >= true
print(coef( pout)[c(4,6)])
beta <-coef( pout)[c(4,6)]
ci <- confint( pout)[c(4,6),,drop = F]
lower <- ci[,1]
upper <- ci[,2]
print("ci width parametric")
print(upper - lower)
pass <- c(pass, lower <= true & upper >= true)
all_coefs <- cbind(all_coefs, c(coefs,beta))
passes <- cbind(passes, pass)
print(rowMeans(passes))
}
return(list(n=n, all_coefs = all_coefs, passes = passes, true = true))
})
save(output, file = "spORsim1rerun1.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.