library(ggplot2)
library(data.table)
ns <- c( 5000, 10000, 500, 1000, 2500)
ns <- sort(ns)
hard_list <- c(T,F)
pos_list <- c(T,F)
use_oracle_sieve <- F
append <- "xgboost_2"
for(pos in pos_list){
for(hard in hard_list) {
try({
sims_list <- lapply(ns, function(n) {
load(paste0("mainSimResults/simsCATE", hard, pos, "n", n, "_", append))
simresults <- get(paste0("simresults", n))
onestepbenchoracle <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "CATEonestepbenchoracle")))
onestepbench <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "CATEonestepbench")))
causalforestrisks <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "risk_cf")))
substrisks <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "risk_subst")))
lrnr_names <- simresults[[1]]$sieve$sieve_names #names(simresults[[1]]$CATEonestepbench) #simresults[[1]]$sieve[[1]]
#lrnr_names <- unlist(lapply(lrnr_names, function(name) {
# paste0(name ,"_", c( paste0("fourier_basis_", 0:4, "_plugin")))
#}))
iter <- rep(1:length(simresults), each = length(lrnr_names))
cvrisksDRoracle <- unlist( lapply(simresults, function(item) {
item$sieve$cvrisksDRoracle
}))
cvrisksDR <- unlist(lapply(seq_along(simresults), function(index) {
item <- simresults[[index]]
as.vector(item$sieve$cvrisksDR)
}))
risks_oracle <- unlist( lapply(simresults, function(item) {
item$sieve$risks_oracle
}))
dt <- data.table(iter, lrnr_full = lrnr_names, cvrisksDR, cvrisksDRoracle, risks_oracle)
dt$degree <- as.numeric(stringr::str_match(dt$lrnr_full, "fourier_basis_([0-9]+)")[,2])
dt$degree <- as.numeric(stringr::str_match(dt$lrnr_full, "fourier.basis_([0-9]+)")[,2])
dt$degree[grep("no_sieve", dt$lrnr_full)] <- 0
dt$lrnr[ grep("gam3", dt$lrnr_full)] <- "gam3"
dt$lrnr[ grep("gam4", dt$lrnr_full)] <- "gam4"
dt$lrnr[ grep("gam5", dt$lrnr_full)] <- "gam5"
dt$lrnr[ grep("glm", dt$lrnr_full)] <- "glm"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("rpart", dt$lrnr_full)] <- "rpart"
dt$lrnr[ grep("ranger_500_TRUE_none_1_7", dt$lrnr_full)] <- "ranger_7"
dt$lrnr[ grep("ranger_500_TRUE_none_1_13", dt$lrnr_full)] <- "ranger_13"
dt$lrnr[ grep("ranger_500_TRUE_none_1_10", dt$lrnr_full)] <- "ranger_10"
## dt$lrnr[ grep("xgboost_20_1_7", dt$lrnr_full)] <- "xgboost_7"
# dt$lrnr[ grep("xgboost_20_1_5", dt$lrnr_full)] <- "xgboost_5"
# dt$lrnr[ grep("xgboost_20_1_3", dt$lrnr_full)] <- "xgboost_3"
dt$lrnr <- gsub("Lrnr_", "", dt$lrnr)
dt$lrnr <- gsub("_fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub("_no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub(".no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub("_fourier.basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier.basis.+", "", dt$lrnr)
dt$type[!is.na(as.numeric(dt$degree))] <- "sieve"
dt$type[is.na(as.numeric(dt$degree))] <- dt$degree[is.na(as.numeric(dt$degree))]
# tmp <- dt[, cv_sieve_risk := risks_oracle[which.min(cvrisksDR)], by = c("lrnr", "iter")]
# tmp <- tmp[, oracle_sieve_risk := risks_oracle[which.min(risks_oracle)], by = c("lrnr", "iter")]
# tmp <- tmp[!duplicated(paste0(degree, lrnr, iter )),]
#
#
# tmp <- dt[, cv_sieve_risk := which.min(cvrisksDR), by = c("lrnr", "iter")]
# tmp <- tmp[, oracle_sieve_risk := which.min(risks_oracle), by = c("lrnr", "iter")]
# tmp <- tmp[!duplicated(paste0(degree, lrnr, iter )),]
#
###### LATER
#dt <- data.table(lrnr_full = lrnr_names, cvrisksDRoracle,cvrisksDR, risks_oracle)
# dt$degree <- as.numeric(stringr::str_match(dt$lrnr_full, "fourier_basis_([0-9]+)")[,2])
#dt$degree[grep("no_sieve", dt$lrnr_full)] <- 0
tmp <- data.table(risks_oracle = onestepbench, lrnr = names(onestepbench), lrnr_full = names(onestepbench), type = "DR", degree = "DR")
dt <- rbind(dt, tmp, fill = T)
dt$lrnr[ grep("gam3", dt$lrnr_full)] <- "gam3"
dt$lrnr[ grep("gam4", dt$lrnr_full)] <- "gam4"
dt$lrnr[ grep("gam5", dt$lrnr_full)] <- "gam5"
dt$lrnr[ grep("glm", dt$lrnr_full)] <- "glm"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("rpart", dt$lrnr_full)] <- "rpart"
dt$lrnr[ grep("ranger_500_TRUE_none_1_7", dt$lrnr_full)] <- "ranger_7"
dt$lrnr[ grep("ranger_500_TRUE_none_1_13", dt$lrnr_full)] <- "ranger_13"
dt$lrnr[ grep("ranger_500_TRUE_none_1_10", dt$lrnr_full)] <- "ranger_10"
## dt$lrnr[ grep("xgboost_20_1_7", dt$lrnr_full)] <- "xgboost_7"
# dt$lrnr[ grep("xgboost_20_1_5", dt$lrnr_full)] <- "xgboost_5"
# dt$lrnr[ grep("xgboost_20_1_3", dt$lrnr_full)] <- "xgboost_3"
dt$lrnr <- gsub("Lrnr_", "", dt$lrnr)
dt$lrnr <- gsub("_fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub("_no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub(".no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub("_fourier.basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier.basis.+", "", dt$lrnr)
unique(dt$lrnr)
dt$type[!is.na(as.numeric(dt$degree))] <- "sieve"
dt$type[is.na(as.numeric(dt$degree))] <- dt$degree[is.na(as.numeric(dt$degree))]
dt[, risks_best := mean(risks_oracle), by = c("lrnr", "type", "degree")]
#dt[is.na(as.numeric(dt$degree)), risks_best := risks_oracle, by = c("lrnr", "type")]
dt2 <- dt[,c("lrnr", "risks_best", "type", "degree"), with = F]
dt2 <- unique(dt2)
dt2$n <- n
return(dt2)
})
dt <- rbindlist(sims_list)
# dt <- dt[dt$type == "sieve",]
dt <- dt[-grep("cv", dt$lrnr),]
dt_tmp<-dt
dt_tmp <- dt_tmp[grep("xgboost", dt$lrnr), ]
dt_tmp$n <- as.factor(dt_tmp$n)
max_depth <- stringr::str_match(dt_tmp$lrnr, "[0-9]+$")
max_depth[is.na(max_depth)] <- "cv"
dt_tmp$lrnr <- paste0("xgboost (", "max_depth=", max_depth,")")
dt_tmp_sieve <- dt_tmp[type == "sieve"]
dt_tmp_sieve$degree <- as.numeric(dt_tmp_sieve$degree)
plt <- ggplot(dt_tmp_sieve, aes(x = degree, y = risks_best, group = n, color = n, linetype = n)) + geom_line() +
facet_wrap(~lrnr, scales = "free") + theme(axis.text.x = element_text( vjust = 0.5, hjust=1)) + ylab("MSE") + scale_y_log10(limits = range(dt_tmp$risks_best))
plt <- plt + geom_hline(data = dt_tmp[type != "sieve"], alpha = 0.4, aes(yintercept = risks_best,linetype= n, color = n))
plt <-plt + labs(group = "Sample Size (n)", color ="Sample Size (n)", linetype = "Sample Size (n)", "Order of trig. basis", y = "Mean-Squared-Error (MSE)" )
ggsave(paste0("mainSimResults/SievePlotxgboost_oracleSieve", "pos=",pos, "hard=",hard, ".pdf"), width = 9, height = 6)
dt_tmp<-dt[!(dt$lrnr %in% c("glm", "earth", "gam3", "gam4", "gam5")),]
dt_tmp <- dt_tmp[-grep("xgboost", dt$lrnr), ]
dt_tmp$n <- as.factor(dt_tmp$n)
max_depth <- stringr::str_match(dt_tmp$lrnr, "([0-9]+)_xg$")[,2]
max_depth[is.na(max_depth)] <- "cv"
dt_tmp$lrnr <- paste0("ranger (", "max_depth=", max_depth,")")
dt_tmp$lrnr <- as.factor(dt_tmp$lrnr)
levels( dt_tmp$lrnr) <- c(sort(unique(dt_tmp$lrnr[-grep("=[0-9][0-9]", dt_tmp$lrnr)])),
sort(unique(dt_tmp$lrnr[grep("=[0-9][0-9]", dt_tmp$lrnr)])))
dt_tmp_sieve <- dt_tmp[type == "sieve"]
dt_tmp_sieve$degree <- as.numeric(dt_tmp_sieve$degree)
plt <- ggplot(dt_tmp_sieve, aes(x = degree, y = risks_best, group = n, color = n, linetype = n)) + geom_line() +
facet_wrap(~lrnr, scales = "free") + theme(axis.text.x = element_text( vjust = 0.5, hjust=1)) + ylab("MSE") + scale_y_log10(limits = range(dt_tmp$risks_best))
plt <- plt + geom_hline(data = dt_tmp[type != "sieve"], alpha = 0.4, aes(yintercept = risks_best, linetype = n, color = n))
plt <-plt + labs(group = "Sample Size (n)", color ="Sample Size (n)", linetype = "Sample Size (n)", "Order of trig. basis", y = "Mean-Squared-Error (MSE)" )
ggsave(paste0("mainSimResults/SievePlotRanger_oracleSieve", "pos=",pos, "hard=",hard, ".pdf"), width = 9, height = 6)
})
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.