library(ggplot2)
library(data.table)
ns <- c( 5000, 10000, 500, 1000, 2500)
ns <- sort(ns)
hard_list <- c(T,F)
pos_list <- c(T,F)
use_oracle_sieve <- F
for(pos in pos_list){
for(hard in hard_list) {
try({
sims_list <- lapply(ns, function(n) {
load(paste0("mainSimResults/simsCATE", hard, pos, "n", n, "_gam_highDim"))
simresults <- get(paste0("simresults", n))
onestepbenchoracle <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "CATEonestepbenchoracle")))
onestepbench <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "CATEonestepbench")))
causalforestrisks <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "risk_cf")))
substrisks <- rowMeans(do.call(cbind, lapply(simresults, `[[`, "risk_subst")))
lrnr_names <- names(simresults[[1]]$CATEonestepbench) #simresults[[1]]$sieve[[1]]
lrnr_names <- unlist(lapply(lrnr_names, function(name) {
paste0(name , c( "_no_sieve.plugin", paste0("_fourier_basis_", 1:4, "_plugin")))
}))
iter <- rep(1:length(simresults), each = length(lrnr_names))
cvrisksDRoracle <- unlist( lapply(simresults, function(item) {
item$sieve$cvrisksDRoracle
}))
cvrisksDR <- unlist(lapply(seq_along(simresults), function(index) {
item <- simresults[[index]]
as.vector(item$sieve$cvrisksDR)
}))
risks_oracle <- unlist( lapply(simresults, function(item) {
item$sieve$risks_oracle
}))
dt <- data.table(iter, lrnr_full = lrnr_names, cvrisksDR, cvrisksDRoracle, risks_oracle)
dt$degree <- as.numeric(stringr::str_match(dt$lrnr_full, "fourier_basis_([0-9]+)")[,2])
dt$degree[grep("no_sieve", dt$lrnr_full)] <- 0
dt$lrnr[ grep("gam3", dt$lrnr_full)] <- "gam3"
dt$lrnr[ grep("gam4", dt$lrnr_full)] <- "gam4"
dt$lrnr[ grep("gam5", dt$lrnr_full)] <- "gam5"
dt$lrnr[ grep("glm", dt$lrnr_full)] <- "glm"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("rpart", dt$lrnr_full)] <- "rpart"
dt$lrnr[ grep("ranger_500_TRUE_none_1_7", dt$lrnr_full)] <- "ranger_7"
dt$lrnr[ grep("ranger_500_TRUE_none_1_13", dt$lrnr_full)] <- "ranger_13"
dt$lrnr[ grep("ranger_500_TRUE_none_1_10", dt$lrnr_full)] <- "ranger_10"
## dt$lrnr[ grep("xgboost_20_1_7", dt$lrnr_full)] <- "xgboost_7"
# dt$lrnr[ grep("xgboost_20_1_5", dt$lrnr_full)] <- "xgboost_5"
# dt$lrnr[ grep("xgboost_20_1_3", dt$lrnr_full)] <- "xgboost_3"
dt$lrnr <- gsub("Lrnr_", "", dt$lrnr)
dt$lrnr <- gsub("_fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub("_no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub(".no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub("_fourier.basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier.basis.+", "", dt$lrnr)
dt$type[!is.na(as.numeric(dt$degree))] <- "sieve"
dt$type[is.na(as.numeric(dt$degree))] <- dt$degree[is.na(as.numeric(dt$degree))]
dt <- dt[dt$degree > 0]
tmp <- dt[, cv_sieve_risk := risks_oracle[which.min(cvrisksDR)], by = c("lrnr", "iter")]
tmp <- tmp[, oracle_sieve_risk := risks_oracle[which.min(risks_oracle)], by = c("lrnr", "iter")]
tmp <- tmp[!duplicated(paste0(degree, lrnr, iter )),]
tmp <- dt[, cv_sieve_risk := which.min(cvrisksDR), by = c("lrnr", "iter")]
tmp <- tmp[, oracle_sieve_risk := which.min(risks_oracle), by = c("lrnr", "iter")]
tmp <- tmp[!duplicated(paste0(degree, lrnr, iter )),]
###### LATER
#dt <- data.table(lrnr_full = lrnr_names, cvrisksDRoracle,cvrisksDR, risks_oracle)
# dt$degree <- as.numeric(stringr::str_match(dt$lrnr_full, "fourier_basis_([0-9]+)")[,2])
#dt$degree[grep("no_sieve", dt$lrnr_full)] <- 0
tmp <- data.table(risks_oracle = onestepbench, lrnr_full = names(onestepbench), degree = "DR")
dt <- rbind(dt, tmp, fill = T)
tmp <- data.table(risks_oracle = onestepbenchoracle, lrnr_full = names(onestepbench), degree = "DRoracle")
dt <- rbind(dt, tmp, fill = T)
tmp <- data.table(risks_oracle = causalforestrisks, lrnr_full = "causalforest", lrnr = "causalforest", degree = "causalforest")
dt <- rbind(dt, tmp, fill = T)
tmp <- data.table(risks_oracle = substrisks, lrnr_full = names(onestepbench), degree = "subst")
dt <- rbind(dt, tmp, fill = T)
dt$lrnr <- dt$lrnr_full
dt$lrnr[ grep("gam3", dt$lrnr_full)] <- "gam3"
dt$lrnr[ grep("gam4", dt$lrnr_full)] <- "gam4"
dt$lrnr[ grep("gam5", dt$lrnr_full)] <- "gam5"
dt$lrnr[ grep("glm", dt$lrnr_full)] <- "glm"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("earth", dt$lrnr_full)] <- "earth"
dt$lrnr[ grep("rpart", dt$lrnr_full)] <- "rpart"
dt$lrnr[ grep("ranger_500_TRUE_none_1_7", dt$lrnr_full)] <- "ranger_7"
dt$lrnr[ grep("ranger_500_TRUE_none_1_13", dt$lrnr_full)] <- "ranger_13"
dt$lrnr[ grep("ranger_500_TRUE_none_1_10", dt$lrnr_full)] <- "ranger_10"
## dt$lrnr[ grep("xgboost_20_1_7", dt$lrnr_full)] <- "xgboost_7"
# dt$lrnr[ grep("xgboost_20_1_5", dt$lrnr_full)] <- "xgboost_5"
# dt$lrnr[ grep("xgboost_20_1_3", dt$lrnr_full)] <- "xgboost_3"
dt$lrnr <- gsub("Lrnr_", "", dt$lrnr)
dt$lrnr <- gsub("_fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier_basis.+", "", dt$lrnr)
dt$lrnr <- gsub("_no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub(".no_sieve.+", "", dt$lrnr)
dt$lrnr <- gsub("_fourier.basis.+", "", dt$lrnr)
dt$lrnr <- gsub(".fourier.basis.+", "", dt$lrnr)
dt$type[!is.na(as.numeric(dt$degree))] <- "sieve"
dt$type[is.na(as.numeric(dt$degree))] <- dt$degree[is.na(as.numeric(dt$degree))]
print(unique(dt$lrnr_full))
if(!use_oracle_sieve){
dt[!is.na(as.numeric(dt$degree)), risks_oracle := risks_oracle[which.min(cvrisksDR)], by = c("lrnr", "type", "iter")]
} else {
dt[!is.na(as.numeric(dt$degree)), risks_oracle := min(risks_oracle), by = c("iter", "lrnr", "type")]
}
dt[, risks_best := mean(risks_oracle), by = c("lrnr", "type")]
#dt[is.na(as.numeric(dt$degree)), risks_best := risks_oracle, by = c("lrnr", "type")]
dt2 <- dt[,c("lrnr", "risks_best", "type"), with = F]
dt2 <- unique(dt2)
dt2$n <- n
return(dt2)
})
dt <- rbindlist(sims_list)
dt <- rbindlist(sims_list)
dt <- dt[dt$lrnr!="causalforest",]
s <- stringr::str_match(dt$lrnr[grep("gam",dt$lrnr)], "s(.+)_")[,2]
dt$lrnr[grep("gam",dt$lrnr)] <- paste0("gam (s=", s, ")")
dt$lrnr[grep("gam",dt$lrnr)][is.na(s)] <- paste0("gam (s=cv)")
dt_tmp<-dt
plt <- ggplot(dt_tmp, aes(x = n, y = risks_best, group = type, color = type, linetype = type)) + geom_line() +
facet_wrap(~lrnr, scales = "free") + theme(axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) + ylab("MSE") + scale_y_log10(limits = c(min(1e-1, min(dt_tmp$risks_best)), max(dt_tmp$risks_best))) + scale_x_log10(breaks = c(500, 1000, 2500, 5000, 10000))
plt <- plt + xlab("Sample Size (n)") + ylab("Mean-Squared-Error (MSE)") + theme_bw() + labs(color = "Method", group = "Method", linetype = "Method")
ggsave(paste0("mainSimResults/performancePlot_GAM_CATEhighDim_", "pos=",pos, "hard=",hard, ".pdf"), width = 8, height = 7)
})
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.