library(SuperLearner)
library(npcausalML)
library(future)
source("simCATE.R")
SL.gam3 <- function(Y, X, newX, family, obsWeights, cts.num = 4,...) {
deg.gam <- 3
SL.gam(Y, X, newX, family, obsWeights, deg.gam, cts.num,... )
}
SL.gam4 <- function(Y, X, newX, family, obsWeights, cts.num = 4,...) {
deg.gam <- 4
SL.gam(Y, X, newX, family, obsWeights, deg.gam, cts.num,... )
}
SL.gam5 <- function(Y, X, newX, family, obsWeights, cts.num = 4,...) {
deg.gam <- 5
SL.gam(Y, X, newX, family, obsWeights, deg.gam, cts.num,... )
}
list_of_sieves_uni <- list(
"no_sieve" = NULL,
fourier_basis$new(orders = c(1,0)),
fourier_basis$new(orders = c(2,0)),
fourier_basis$new(orders = c(3,0)),
fourier_basis$new(orders = c(4,0))
)
lrnr_gam3 <- Lrnr_pkg_SuperLearner$new("SL.gam3" )
lrnr_gam4 <- Lrnr_pkg_SuperLearner$new("SL.gam4" )
lrnr_gam5 <- Lrnr_pkg_SuperLearner$new("SL.gam5" )
hard <- F
pos <- F
onesim <- function(n) {
sieve_list <- list_of_sieves_uni
data <- as.data.frame(sim.CATE(n, hard, pos))
W <- data[,grep("^W", colnames(data))]
A <- data$A
Y <- data$Y
W1 <- data$W1
EY1Wtrue <- data$EY1W
EY0Wtrue <- data$EY0W
pA1Wtrue <- data$pA1W
EYWtrue <- ifelse(A==1, EY1Wtrue, EY0Wtrue)
CATE <- EY1Wtrue - EY0Wtrue
# sieve method
lrnr_Y <- make_learner(Pipeline, Lrnr_cv$new(Stack$new(
Lrnr_xgboost$new(max_depth =4),
Lrnr_xgboost$new(max_depth =5),
Lrnr_xgboost$new(max_depth =6)))#Stack$new(
#Lrnr_stratified$new(Lrnr_gam$new(), "A"))
, Lrnr_cv_selector$new(loss_squared_error))
lrnr_A <- make_learner(Pipeline, Lrnr_cv$new(
Stack$new(
Lrnr_xgboost$new(max_depth =4),
Lrnr_xgboost$new(max_depth =5),
Lrnr_xgboost$new(max_depth =6)
)
), Lrnr_cv_selector$new(loss_squared_error))
data_train <- data #as.data.frame(sim.CATE(n, hard, pos))
initial_likelihood <- npcausalML:::estimate_initial_likelihood(W=data_train[,c("W1", "W2","W3")], data_train$A, data_train$Y, weights = rep(1,n), lrnr_A, lrnr_Y, folds = 10)
data1 <- data
data0 <- data
data1$A <- 1
data0$A <- 0
taskY <- sl3_Task$new(data, covariates = c("W1", "W2", "W3", "A"), outcome = "Y")
taskY0 <- sl3_Task$new(data0, covariates = c("W1", "W2", "W3", "A"), outcome = "Y")
taskY1 <- sl3_Task$new(data1, covariates = c("W1", "W2", "W3", "A"), outcome = "Y")
taskA <- sl3_Task$new(data, covariates = c("W1", "W2", "W3"), outcome = "A")
pA1W_est <- initial_likelihood$internal$sl3_Learner_pA1W_trained$predict(taskA)
EY1W_est <- initial_likelihood$internal$sl3_Learner_EYAW_trained$predict(taskY1)
EY0W_est <- initial_likelihood$internal$sl3_Learner_EYAW_trained$predict(taskY0)
pA1W_est <- pmax(pA1W_est, 0.01)
pA1W_est <- pmin(pA1W_est, 0.99)
CATE_library <- list( Lrnr_xgboost$new(max_depth =4),
Lrnr_xgboost$new(max_depth =5),
Lrnr_xgboost$new(max_depth =6) )
subst_compare <- Stack$new(CATE_library)
CATE_library_strat <- lapply(CATE_library , function (lrnr) {
Lrnr_stratified$new(lrnr, "A")
})
subst_compare <- Stack$new(CATE_library)
subst_compare <- subst_compare$train(taskY)
subst_EY1W <-subst_compare$predict(taskY1)
subst_EY0W <- subst_compare$predict(taskY0)
subst_CATE <- subst_EY1W - subst_EY0W
est_sieve_nuisances <- npcausalML:::compute_plugin_and_IPW_sieve_nuisances(data.frame(W1=data$W1), A, Y, EY1W_est, EY0W_est, pA1W_est, rep(1,n), list_of_sieves_uni[[4]], design_function_sieve_plugin_CATE, weight_function_sieve_plugin_CATE, design_function_sieve_IPW_CATE, weight_function_sieve_IPW_CATE, family_for_targeting = binomial(), debug = FALSE)
mean((est_sieve_nuisances$EY1W_star - est_sieve_nuisances$EY0W_star - CATE)^2)
mean((EY1W_est - EY0W_est - CATE)^2)
risk_subst<- apply(subst_CATE, 2, function(pred) {
mean((pred - CATE)^2)
})
risk_subst_cv <- mean((EY1W_est - EY0W_est - CATE)^2)
list(risk_subst_cv = risk_subst_cv, risk_subst = risk_subst)
}
nsims <- 50
print(500)
#simresults500 <- lapply(1:nsims, function(i){
# print(i)
#onesim(500)
#})
#save(simresults500, file = paste0("simsCATE", hard,pos, "n500_3"))
print(1000)
simresults1000 <- lapply(1:nsims, function(i){
print(i)
onesim(1000)
})
save(simresults1000, file = paste0("simsCATE", hard,pos, "n1000_3"))
print(2500)
simresults2500 <- lapply(1:nsims, function(i){
print(i)
onesim(2500)
})
save(simresults2500, file = paste0("simsCATE", hard,pos, "n2500_3"))
print(5000)
simresults5000 <- lapply(1:nsims, function(i){
print(i)
onesim(5000)
})
save(simresults5000, file = paste0("simsCATE", hard,pos, "n5000_3"))
print(10000)
simresults10000 <- lapply(1:nsims, function(i){
print(i)
onesim(10000)
})
save(simresults10000, file = paste0("simsCATE", hard,pos, "n10000_3"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.