R/IBDCheck.R

Defines functions IBDCheck

Documented in IBDCheck

#' Sample relationship check with SeqSQC object input file. 
#'
#' Function to calculate the IBD coefficients for all sample pairs and
#' to predict related sample pairs in study cohort.
#'
#' @param seqfile SeqSQC object, which includes the merged gds file
#'     for study cohort and benchmark.
#' @param remove.samples a vector of sample names for removal from IBD
#'     calculation. Could be problematic samples identified from
#'     previous QC steps, or user-defined samples.
#' @param LDprune whether to use LD-pruned snp set. The default is
#'     TRUE.
#' @param kin.filter whether to use "kinship coefficient >= 0.08" as
#'     the additional criteria for related samples. The default is
#'     TRUE.
#' @param missing.rate to use the SNPs with "<= \code{missing.rate}"
#'     only; if NaN, no threshold. By default, we use
#'     \code{missing.rate = 0.1} to filter out variants with missing
#'     rate greater than 10\%.
#' @param ss.cutoff the minimum sample size (300 by default) to apply
#'     the MAF filter. This sample size is the sum of study samples
#'     and the benchmark samples of the same population as the study
#'     cohort.
#' @param maf to use the SNPs with ">= \code{maf}" if sample size
#'     defined in above argument is greater than \code{ss.cutoff};
#'     otherwise NaN is used by default for no MAF threshold.
#' @param hwe to use the SNPs with Hardy-Weinberg equilibrium p >=
#'     \code{hwe} if sample size defined in above argument is greater
#'     than \code{ss.cutoff}; otherwise no hwe threshold. The default
#'     is 1e-6.
#' @param ... Arguments to be passed to other methods.
#' @keywords IBD
#' @return a data frame with sample names, the descent coefficients of
#'     k0, k1 and kinship, self-reported relationship and predicted
#'     relationship for each pair of samples.
#' @details Using LD-pruned variants (by default), we calculate the
#'     IBD coefficients for all sample pairs, and then predict related
#'     sample pairs in study cohort using the support vector machine
#'     (SVM) method with linear kernel and the known relatedness
#'     embedded in benchmark data as training set. \cr Sample pairs
#'     with discordant self-reported and predicted relationship are
#'     considered as problematic. All predicted related pairs are also
#'     required to have coefficient of kinship >= 0.08 by default. The
#'     sample with higher missing rate in each related pair is
#'     selected for removal from further analysis by function of
#'     \code{IBDRemove}.
#' @import RColorBrewer
#' @import e1071
#' @import reshape2
#' @export
#' @examples
#' load(system.file("extdata", "example.seqfile.Rdata", package="SeqSQC"))
#' gfile <- system.file("extdata", "example.gds", package="SeqSQC")
#' seqfile <- SeqSQC(gdsfile = gfile, QCresult = QCresult(seqfile))
#' seqfile <- IBDCheck(seqfile, remove.samples=NULL, LDprune=TRUE, missing.rate=0.1)
#' res.ibd <- QCresult(seqfile)$IBD
#' tail(res.ibd)
#' @author Qian Liu \email{qliu7@@buffalo.edu}


IBDCheck <- function(seqfile, remove.samples = NULL, LDprune = TRUE,
                     kin.filter = TRUE, missing.rate = 0.1,
                     ss.cutoff = 300, maf = 0.01, hwe = 1e-6, ...){

    ## check
    if (!inherits(seqfile, "SeqSQC")){
        return("object should inherit from 'SeqSQC'.")
    }

    message("calculating pairwise IBD ...")
    
    gfile <- SeqOpen(seqfile, readonly=TRUE)
    
    nds <- c("sample.id", "sample.annot", "snp.id") 
    allnds <- lapply(nds, function(x) read.gdsn(index.gdsn(gfile, x)))
    names(allnds) <- c("samples", "sampleanno", "snp.id")
    
    studyid <- allnds$sampleanno[allnds$sampleanno[,5] == "study", 1]
    
    ## sample filters. (remove prespecified "remove.samples", and only
    ## keep samples within the study population and benchmark data)
    study.pop <- unique(allnds$sampleanno[allnds$sampleanno$group == "study", "population"])
    if (length(study.pop) > 1)
        stop("Study samples should be single population, please prepare input file accordingly.")
    
    if (!is.null(remove.samples)){
        flag <- (allnds$sampleanno$group != "study" | allnds$sampleanno$population == study.pop) &
            !allnds$samples %in% remove.samples
    } else {
        flag <- allnds$sampleanno$group != "study" | allnds$sampleanno$population == study.pop
    }
    sample.ibd <- allnds$samples[flag]
    
    ## add hwe filter for variants when sample size >= 300.
    if (length(sample.ibd) >= ss.cutoff){
        snp.hwe <- snpgdsHWE(gfile, sample.id=sample.ibd)
        hwe.idx <- snp.hwe > hwe & !is.na(snp.hwe)
    } else {
        hwe.idx <- rep(TRUE, length(allnds$snp.id))
    }
    
    ## use LDpruned SNPs if LDprune == TRUE.
    if(LDprune){
        ld <- read.gdsn(index.gdsn(gfile, "snp.annot/LDprune"))
    }else{
        ld <- rep(TRUE, length(allnds$snp.id))
    }
    
    ## SNP filters in together. (HWE+LDprune)
    snp.idx <- ld & hwe.idx
    
    ## use maf filter if sample size >= 300.
    if (length(sample.ibd) >= ss.cutoff){ 
        IBD.res <- snpgdsIBDMoM(gfile, sample.id=sample.ibd,
                                snp.id=allnds$snp.id[snp.idx],
                                kinship=TRUE, maf=maf,
                                missing.rate=missing.rate, ...)
    }else{
        IBD.res <- snpgdsIBDMoM(gfile, sample.id=sample.ibd,
                                snp.id=allnds$snp.id[snp.idx],
                                kinship=TRUE, maf=NaN,
                                missing.rate=missing.rate, ...)
    }
    closefn.gds(gfile)

    k0 <- IBD.res$k0
    k1 <- IBD.res$k1
    kin <- IBD.res$kinship
    
    ## We generate a big dataset for pairwise IBD.res result.
    sample.id.ibd <- IBD.res$sample.id
    rownames(kin) <- rownames(k1) <- rownames(k0) <- sample.id.ibd
    colnames(kin) <- colnames(k1) <- colnames(k0) <- sample.id.ibd
    idx <- melt(upper.tri(k0))[,3]
    k0m <- melt(k0)[idx,]
    k1m <- melt(k1)[idx,]
    kinm <- melt(kin)[idx,]
    res.ibd <- cbind(k0m, k1m[,3], kinm[,3])
    colnames(res.ibd) <- c("id1", "id2", "k0", "k1", "kin")        
    res.ibd$id1 <- as.character(res.ibd$id1)
    res.ibd$id2 <- as.character(res.ibd$id2)
    
    ## 1000g benchmark sample relation
    PO <- rbind(c("NA19238", "NA19240"),
                c("NA19239", "NA19240"),
                c("NA20868", "NA20871"),
                c("NA20886", "NA20898"))
    FS <- rbind(c("HG00581", "HG00635"),
                c("NA19713", "NA19985"))
    HF <- rbind(c("HG00119", "HG00124"),
                c("HG02353", "HG02363")
                )
    
    res.ibd$label <- "UN"
    res.ibd$label[paste(res.ibd$id1, res.ibd$id2) %in% paste(PO[,1], PO[,2])] <- "PO"
    res.ibd$label[paste(res.ibd$id1, res.ibd$id2) %in% paste(FS[,1], FS[,2])] <- "FS"
    res.ibd$label[paste(res.ibd$id1, res.ibd$id2) %in% paste(HF[,1], HF[,2])] <- "HF"
    res.ibd$label <- factor(res.ibd$label)
    
    ## index for 1000g benchmark data
    idx <- !(res.ibd$id1 %in% studyid | res.ibd$id2 %in% studyid)
    
    ## define relation centers
    centers <- data.frame(k0 = c(0, 0.25, 0.5, 1),
                          k1 = c(1, 0.5, 0.5, 0),
                          label = c("PO", "FS", "HF", "UN"),
                          stringsAsFactors=FALSE)
    
    ## if(method.pred=="svm"){
    ## use 1000g benchmark related samples and centers as training data. 
    ## svm: descriminate PO, FS, HF, FC, UN.
    res.svm <- rbind(res.ibd[idx, c("k0", "k1", "label")], centers[, c("k0", "k1", "label")])
    res.svm$label <- factor(res.svm$label)
    model <- svm(label ~ k0 + k1, data=res.svm, probability = FALSE, kernel="linear")
    ## predict the study sample relations, with probabilities.
    pred.svm <- predict(model, res.ibd[, c("k0", "k1")], probability = FALSE)
    pred.svm <- factor(pred.svm, levels=c("DU", levels(pred.svm)))
    pred.svm[res.ibd$kin > 0.46] <- "DU"
    ## use kin > 0.08 as additional filter.
    if(kin.filter){
        pred.svm[pred.svm != "UN" & res.ibd$kin < 0.08] <- "UN"
    }
    res.ibd <- data.frame(res.ibd[, 1:6], pred.label = pred.svm, stringsAsFactors=FALSE)
    res.ibd$pred.label <- as.character(res.ibd$pred.label)
    res.ibd$pred.label[res.ibd$pred.label != "UN"] <- "Related"
    res.ibd$pred.label <- factor(res.ibd$pred.label)
    ## }

    ## fully executable, could resume when updating.
    ## if(method.pred == "vglm"){
    ##     ## library(VGAM) ## importFrom VGAM vglm
    ##     ## use 1000g benchmark related samples and centers as training data.
    ##     ## vglm: descriminate PO, FS, HF, FC, UN.
    ##     res.vglm <- rbind(res.ibd[idx, c("k0", "k1", "label")], centers[, c("k0", "k1", "label")])
    ##     res.vglm$label <- factor(res.vglm$label)
    ##     model <- vglm(label ~ k0 + k1, data=res.vglm, family = multinomial)
    ##     probabilities <- predict(model, res.ibd[, c("k0", "k1")], type="response")
    ##     pred.vglm <- apply(probabilities, 1, which.max)
    ##     pred.vglm[which(pred.vglm=="1")] <- levels(res.vglm$label)[1]
    ##     pred.vglm[which(pred.vglm=="2")] <- levels(res.vglm$label)[2]
    ##     pred.vglm[which(pred.vglm=="3")] <- levels(res.vglm$label)[3]
    ##     pred.vglm[which(pred.vglm=="4")] <- levels(res.vglm$label)[4]

    ##     ## identify duplicates
    ##     pred.vglm[res.ibd$kin > 0.46] <- "DU"
    ##     pred.vglm <- factor(pred.vglm)
    ##     ## use kin > 0.08 as additional filter.
    ##     if(kin.filter){
    ##         pred.vglm[pred.vglm != "UN" & res.ibd$kin < 0.08] <- "UN"
    ##     }
    ##     res.ibd <- data.frame(res.ibd[, 1:6], pred.label = pred.vglm)
    ##     res.ibd$pred.label <- as.character(res.ibd$pred.label)
    ##     res.ibd$pred.label[res.ibd$pred.label != "UN"] <- "Related"
    ##     res.ibd$pred.label <- factor(res.ibd$pred.label)
    ## }
    
    ## return the SeqSQC object with updated QC results.
    a <- QCresult(seqfile)
    a$IBD <- res.ibd
    outfile <- SeqSQC(gdsfile = gdsfile(seqfile), QCresult = a)
    return(outfile)


}
Liubuntu/SeqSQC documentation built on April 12, 2024, 6:39 p.m.