#'def
#'
#'Default algorithm for fitting parameters of psychometric function. Version of algorithm with fixed gamma parameter. Gamma has to be specifed.
#'
#'@param data Specifies the data set on which the function will be fitted. Data have to be formated in specified way - data.frame/tibble (yes, no, predictor columns).
#'@param gamma sets the loves boundary of function
#'@param sigmoid determines the outer shape of the fuction
#'@param core dermines scalling of predictor
#'@param ... specifies the parametres of optim function
#'
#'@return vector of return values
#'@export
#'
def_fixed_gamma <- function(data, sigmoid, core, gamma=0.05,par=NULL, fn=NULL, gr=NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE){
model <- NULL
if(gamma < 0 || gamma > 1) {stop("Gamma must be in interval [0,1).")}
coref <- get(paste(core, ".orig.cdf", sep=""))
corei_x <- get(paste(core, ".inverse_x.cdf", sep=""))
sigmoidf <- get(paste(sigmoid, ".orig.cdf",sep=""))
sigmoidi <- get(paste(sigmoid, ".inverse.cdf",sep=""))
if(is.null(fn)){ default_fn=TRUE
fn <- fn_def_fixed_gamma
}else{default_fn=FALSE} #if fn is not specified the most-likelihood function is used
if(is.null(par)){
la <- max(data$yes / (data$yes + data$no))
## lambda adjusting
if(la >= 1){ la <- 1 - .Machine$double.neg.eps}
if(la < 0.90){ la <- 0.90}
##inner parameter adjusting
primPar <- primalParamsDef(sigmoidi, corei_x, data)
par=c(sigmoidi(la), primPar)
} #TODO
fit <- NULL
if(default_fn){
fit <- tryCatch({stats::optim(par=par, fn=fn, gr=gr, gamma, max(data$predictor), min(data$predictor), sigmoidf, sigmoidi, coref, corei_x, data, method=method, lower=lower, upper=upper, control=control)})
}else{
fit <- tryCatch({stats::optim(par=par, fn=fn, gr=gr, gamma, ..., method=method, lower=lower, upper=upper, control=control)})
}
if(!is.list(fit)){return(fit)}
model <- append(fit, list(sigmoid=sigmoid, core=core, gamma=gamma, lambda=(1-sigmoidf(fit$par[1])), params=c(fit$par[-c(1)])))
model$par <- NULL
class(model) <- c("PF",class(model))
model$startMidpoint <- corei_x(sigmoidi(0.5), primPar)
return(model)
}
fn_def_fixed_gamma <- function(params, gamma, guard_u, guard_l, sigmoidf, sigmoidi, coref, corei_x, data){
lambda <- 1 - sigmoidf(params[1])
if(lambda<=0 || (gamma+lambda >= 1)) {return(Inf)}
y <- PFunction(sigmoidf, coref, data$predictor, gamma, lambda, params[-c(1)])
if(any(is.na(y))){return(Inf)}
#checking if function is increasing
ymax <- y[base::which.max(data$predictor)]
ymin <- y[base::which.min(data$predictor)]
if(ymin > ymax){ return(Inf) }
#checking if function is unfolds in range of predictor if halfway is in the range of guards
midpoint <- corei_x(sigmoidi(0.5), params[-c(1)])
if(midpoint < guard_l || midpoint > guard_u){return(Inf)}
if(length(y) != length(data$yes) || length(data$yes) != length(data$no))
{warning("All vectors must have the same length."); return(NaN)}
pe <- data$yes*base::log(y)
pe <- pe + data$no*base::log(1-y)
pe <- -sum(pe)
if(is.nan(pe)){return(Inf)}
return(pe)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.