plot_bin_permute_all: plot_bin_permute_all

Usage Arguments Examples

View source: R/plot_bin_permute_all.R

Usage

1
plot_bin_permute_all(alloutputs, top_pm, lgndcol = 2, legend = FALSE, psigtitle, psigyrange = NULL, savepsigfile, psigpicdim, pvtitle, pvyrange = NULL, savepvfile, pvpicdim, estitle, esyrange = NULL, saveesfile, espicdim)

Arguments

alloutputs
top_pm
lgndcol
legend
psigtitle
psigyrange
savepsigfile
psigpicdim
pvtitle
pvyrange
savepvfile
pvpicdim
estitle
esyrange
saveesfile
espicdim

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (alloutputs, top_pm, lgndcol = 2, legend = FALSE, psigtitle, 
    psigyrange = NULL, savepsigfile, psigpicdim, pvtitle, pvyrange = NULL, 
    savepvfile, pvpicdim, estitle, esyrange = NULL, saveesfile, 
    espicdim) 
{
    require(ggplot2)
    results <- alloutputs$alldist
    selname0 <- alloutputs$selname
    if (top_pm > length(selname0)) {
        stop("top_pm should be smaller than the number of observations.")
    }
    df <- as.data.frame(results$psigdist)
    df$highlight <- ifelse(df$dif == 0, "real data", "permutation")
    df$highlight <- factor(df$highlight, levels = c("real data", 
        "permutation"))
    mycolours <- c(permutation = "black", `real data` = "red")
    N0 <- max(df$dif)
    if (sum(is.na(df))) {
        stop("Missing values exist in psigdist")
    }
    else {
        df$dif <- df$dif/N0
        if (is.null(psigyrange)) {
            y_range <- range(floor(min(df$q1)), ceiling(max(df$q2)))
        }
        else {
            y_range <- psigyrange
        }
        ggplot(df, aes(x = dif, y = median)) + geom_point(size = 5, 
            aes(colour = highlight)) + scale_color_manual("Scenarios", 
            values = mycolours) + geom_pointrange(aes(ymin = q1, 
            ymax = q2, colour = highlight), size = 0.5) + geom_line(size = 1) + 
            xlab("Proportion of exchanges") + ylab("Number of significant features") + 
            ggtitle(psigtitle) + ylim(y_range) + theme_bw() + 
            theme(plot.title = element_text(size = 30, face = "bold"), 
                legend.title = element_text(size = 20), legend.text = element_text(size = 16)) + 
            theme(axis.line = element_line(colour = "black"), 
                panel.grid.major = element_blank(), panel.border = element_blank(), 
                panel.background = element_blank(), axis.line.x = element_line(color = "black", 
                  size = 1.5), axis.line.y = element_line(color = "black", 
                  size = 1.5), axis.text = element_text(size = 16, 
                  face = "bold"), axis.title = element_text(size = 20, 
                  face = "bold"))
        ggsave(filename = savepsigfile, width = psigpicdim[1], 
            height = psigpicdim[2])
    }
    df <- as.data.frame(results$pvdist)
    N <- length(unique(df$dif))
    df$dif <- factor(df$dif, levels = as.character(0:(N - 1)))
    selname <- selname0[1:top_pm]
    if (top_pm < length(selname0)) {
        tt <- split(df, df$dif)
        ss <- lapply(tt, function(x) {
            return(x[1:top_pm, ])
        })
        df <- do.call("rbind", ss)
    }
    if (sum(is.na(df))) {
        stop("Missing values exist in pvdist")
    }
    else {
        df$dif <- as.numeric(as.character(df[, "dif"]))/N0
        df$median <- as.numeric(as.character(df[, "median"]))
        df$q1 <- as.numeric(as.character(df[, "q1"]))
        df$q2 <- as.numeric(as.character(df[, "q2"]))
        df$variable <- factor(df$variable, levels = selname)
        if (is.null(pvyrange)) {
            y_range <- range(floor(min(df$q1)), ceiling(max(df$q2)))
        }
        else {
            y_range <- pvyrange
        }
        p <- ggplot(data = df, aes(x = dif, y = median, colour = variable, 
            group = variable)) + geom_line() + geom_point() + 
            geom_pointrange(aes(ymin = q1, ymax = q2)) + ylim(y_range) + 
            xlab("Proportion of exchanges") + ylab(paste("Log P-values of top", 
            paste(top_pm, "important features", sep = " "), sep = " ")) + 
            ggtitle(pvtitle) + theme_bw() + theme(plot.title = element_text(size = 30, 
            face = "bold"), axis.line = element_line(colour = "black"), 
            panel.grid.major = element_blank(), panel.border = element_blank(), 
            panel.background = element_blank(), axis.line.x = element_line(color = "black", 
                size = 1), axis.line.y = element_line(color = "black", 
                size = 1), axis.text = element_text(size = 16, 
                face = "bold"), axis.title = element_text(size = 20, 
                face = "bold"))
        if (!legend) {
            p <- p + theme(legend.position = "none")
        }
        else {
            p <- p + guides(col = guide_legend(ncol = lgndcol)) + 
                theme(legend.title = element_text(size = 14), 
                  legend.text = element_text(size = 10))
        }
        ggsave(filename = savepvfile, , plot = p, width = pvpicdim[1], 
            height = pvpicdim[2])
    }
    df <- as.data.frame(results$esdist)
    N <- length(unique(df$dif))
    df$dif <- factor(df$dif, levels = as.character(0:(N - 1)))
    selname <- selname0[1:top_pm]
    if (top_pm < length(selname0)) {
        tt <- split(df, df$dif)
        ss <- lapply(tt, function(x) {
            return(x[1:top_pm, ])
        })
        df <- do.call("rbind", ss)
    }
    if (sum(is.na(df))) {
        stop("Missing values exist in esdist")
    }
    else {
        df$dif <- as.numeric(as.character(df[, "dif"]))/N0
        df$median <- as.numeric(as.character(df[, "median"]))
        df$q1 <- as.numeric(as.character(df[, "q1"]))
        df$q2 <- as.numeric(as.character(df[, "q2"]))
        df$variable <- factor(df$variable, levels = selname)
        if (is.null(esyrange)) {
            y_range <- range(min(df$q1) - 0.1, max(df$q2) + 0.1)
        }
        else {
            y_range <- esyrange
        }
        p <- ggplot(data = df, aes(x = dif, y = median, colour = variable, 
            group = variable)) + geom_line() + geom_point() + 
            geom_pointrange(aes(ymin = q1, ymax = q2)) + ylim(y_range) + 
            xlab("Proportion of exchanges") + ylab(paste("Effect sizes of top", 
            paste(top_pm, "important features", sep = " "), sep = " ")) + 
            ggtitle(estitle) + theme_bw() + theme(plot.title = element_text(size = 30, 
            face = "bold"), axis.line = element_line(colour = "black"), 
            panel.grid.major = element_blank(), panel.border = element_blank(), 
            panel.background = element_blank(), axis.line.x = element_line(color = "black", 
                size = 1), axis.line.y = element_line(color = "black", 
                size = 1), axis.text = element_text(size = 16, 
                face = "bold"), axis.title = element_text(size = 20, 
                face = "bold"))
        if (!legend) {
            p <- p + theme(legend.position = "none")
        }
        else {
            p <- p + guides(col = guide_legend(ncol = lgndcol)) + 
                theme(legend.title = element_text(size = 14), 
                  legend.text = element_text(size = 10))
        }
        ggsave(filename = saveesfile, plot = p, width = espicdim[1], 
            height = espicdim[2])
    }
  }

LyonsZhang/ProgPerm documentation built on July 16, 2020, 12:45 a.m.