inst/Lab9/Lab9.R

#Lab 9
# Bootstrap
# Use myboot2 instead of myboot


########### bootstrap function ##################

myboot2<-function(iter=10000,x,fun="mean",alpha=0.05,cx=1.5,...){  #Notice where the ... is repeated in the code
n=length(x)   #sample size

y=sample(x,n*iter,replace=TRUE)
rs.mat=matrix(y,nr=n,nc=iter,byrow=TRUE)
xstat=apply(rs.mat,2,fun) # xstat is a vector and will have iter values in it 
ci=quantile(xstat,c(alpha/2,1-alpha/2))# Nice way to form a confidence interval
# A histogram follows
# The object para will contain the parameters used to make the histogram
para=hist(xstat,freq=FALSE,las=1,
main=paste("Histogram of Bootstrap sample statistics","\n","alpha=",alpha," iter=",iter,sep=""),
...)

#mat will be a matrix that contains the data, this is done so that I can use apply()
mat=matrix(x,nr=length(x),nc=1,byrow=TRUE)

#pte is the point estimate
#This uses whatever fun is
pte=apply(mat,2,fun)
abline(v=pte,lwd=3,col="Black")# Vertical line
segments(ci[1],0,ci[2],0,lwd=4)      #Make the segment for the ci
text(ci[1],0,paste("(",round(ci[1],2),sep=""),col="Red",cex=cx)
text(ci[2],0,paste(round(ci[2],2),")",sep=""),col="Red",cex=cx)

# plot the point estimate 1/2 way up the density
text(pte,max(para$density)/2,round(pte,2),cex=cx)

invisible(list(ci=ci,fun=fun,x=x))# Some output to use if necessary
}

################### END mybooot function #####################

set.seed(39); sam=rnorm(25,mean=25,sd=10)
windows();myboot2(10000,x=sam,fun="mean",alpha=0.05,xlab="mean",col="Purple",cx=1.5) # mac quartz()

## quantile
alpha=0.05
qnorm(1-alpha/2)
qnorm(alpha/2)
MATHSTATSOU/Intro2R documentation built on Feb. 20, 2025, 6:18 a.m.