#' Clustering of time profiles.
#'
#' Soft clustering of time series data with Mfuzz R package [1]. Filtering of
#' genes with low expression changes possible via min.std parameter. Expression
#' values are standardized and undergo fuzzy c-means clustering based
#' on minimization of weighted square error function (see [2]). Fuzzifier
#' parameter m is estimated via mestimate function of [1] based on a relation
#' proposed by Schwaemmle and Jansen [3]. The optimal number of clusters is
#' determined via the minimum distance between cluster centroid using Dmin
#' function of [3]. Be aware that the cluster number determination might be
#' difficult especially for short time series measurements.
#'
#' @references 1. L. Kumar and M. Futschik, Mfuzz: a software package for soft
#' clustering of microarray data, Bioinformation, 2(1) 5-7, 2007.
#' @references 2. Bezdak JC, Pattern Recognition with Fuzzy Objective Function
#' Algorithms, Plenum Press, New York, 1981.
#' @references 3. Schwaemmle and Jensen, Bioinformatics, Vol. 26 (22),
#' 2841-2848, 2010.
#'
#' @param dynConsensusNet result of dynamic analysis: inferred net generated by
#' consDynamicNet function.
#' @param min.std threshold parameter to exclude genes with a low standard
#' deviation. All genes with an expression smaller than min.std will be excluded
#' from clustering. Default value is 0.
#' @param ncenters integer specifying the maximum number of centers which should
#' be tested in minimum distance between cluster centroid test; this number
#' is used as initial number to determine the data-specific maximal
#' cluster number based on number of distinct data points.
#' @return output dataframe of mfuzz function.
#' @keywords manip
#' @export
#' @examples
#' \dontrun{
#' data(OmicsExampleData)
#' data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),
#' tp_genes = c(1, 4, 8, 13, 18, 24), OmicsExampleData,
#' PWdatabase = c("biocarta", "kegg", "nci", "reactome"),
#' TFtargetdatabase = c("userspec"))
#' data_omics = readPhosphodata(data_omics,
#' phosphoreg = system.file("extdata", "phospho_reg_table.txt",
#' package = "pwOmics"))
#' data_omics = readTFdata(data_omics,
#' TF_target_path = system.file("extdata", "TF_targets.txt",
#' package = "pwOmics"))
#' data_omics_plus = readPWdata(data_omics,
#' loadgenelists = system.file("extdata/Genelists", package = "pwOmics"))
#'
#' data_omics_plus = identifyPR(data_omics_plus)
#' setwd(system.file("extdata/Genelists", package = "pwOmics"))
#' data_omics = identifyPWs(data_omics_plus)
#' data_omics = identifyTFs(data_omics)
#' data_omics = identifyRsofTFs(data_omics,
#' noTFs_inPW = 1, order_neighbors = 10)
#' data_omics = identifyPWTFTGs(data_omics)
#' statConsNet = staticConsensusNet(data_omics)
#' consDynNet = consDynamicNet(data_omics, statConsNet)
#' clusterTimeProfiles(consDynNet)
#' }
clusterTimeProfiles <- function(dynConsensusNet, min.std = 0, ncenters = 12) {
if(names(dynConsensusNet[[1]])[[1]] != "APost")
{stop("dynConsensusNet does not contain an appropriate data result
for clustering of time profiles.")}
requireNamespace("Mfuzz", quietly = TRUE)
filter.std = mestimate = Dmin = mfuzz = NULL
matsplines = dynConsensusNet[[2]]
matsplines = ExpressionSet(matsplines)
matsplines = filter.std(matsplines, min.std, visu = FALSE)
m = mestimate(matsplines)
x = as.matrix(exprs(matsplines))
xrows <- nrow(x)
xcols <- ncol(x)
centers <- x[sample(1:xrows, ncenters), drop = FALSE]
Dminval = Dmin(matsplines, m, crange = 2:ncenters, repeats = 5, visu = TRUE)
ind_cent_num = which(abs(diff(na.omit(Dminval), 2)) == max(abs(diff(na.omit(Dminval), 2))))+2
fuzzed_matsplines = mfuzz(matsplines, ind_cent_num, m)
return(fuzzed_matsplines)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.