pipeline.prediction.groupAnalysis <- function(env)
{
dir.create(paste(env$files.name, "- Results/Prediction/Summary Sheets - Groups"), showWarnings=FALSE)
dir.create(paste(env$files.name, "- Results/Prediction/Summary Sheets - Groups/CSV Sheets"), showWarnings=FALSE)
local.env <- new.env()
local.env$preferences <- env$prediction$preferences
local.env$preferences$activated.modules$geneset.analysis <- env$preferences$activated.modules$geneset.analysis
local.env$preferences$standard.spot.modules <- env$preferences$standard.spot.modules
local.env$preferences$dim.1stLvlSom <- env$preferences$dim.1stLvlSom
local.env$gene.info <- env$prediction$gene.info
local.env$gs.def.list <- env$prediction$gs.def.list
#local.env$som.result <- env$som.result
local.env$som.result$feature.BMU <- env$prediction$feature.BMU
local.env$files.name <- env$files.name
local.env$csv.function <- env$csv.function
local.env$color.palette.portraits <- env$color.palette.portraits
local.env$color.palette.heatmaps <- env$color.palette.heatmaps
local.env$indata.temp <- env$prediction$prediction.indata.temp
local.env$preferences$group.maf <- TRUE
local.env$group.labels.origin <- env$prediction$prediction.group.labels
# calculate differential expression statistics
local.env$p.g.m <- matrix(NA, nrow(env$prediction$prediction.indata), length(unique(env$prediction$prediction.group.labels)),
dimnames=list(rownames(env$prediction$prediction.indata), unique(env$prediction$prediction.group.labels)))
local.env$fdr.g.m <- matrix(NA, nrow(env$prediction$prediction.indata), length(unique(env$prediction$prediction.group.labels)),
dimnames=list(rownames(env$prediction$prediction.indata), unique(env$prediction$prediction.group.labels)))
local.env$n.0.m <- rep(NA, length(unique(env$prediction$prediction.group.labels)))
names(env$n.0.m) <- unique(env$prediction$prediction.group.labels)
local.env$perc.DE.m <- rep(NA, length(unique(env$prediction$prediction.group.labels)))
names(env$perc.DE.m) <- unique(env$prediction$prediction.group.labels)
for (gr in seq_along(unique(env$prediction$prediction.group.labels)))
{
samples.indata <- which(env$prediction$prediction.group.labels==unique(env$prediction$prediction.group.labels)[gr])
local.env$p.g.m[,gr] <- apply( env$prediction$prediction.indata, 1, function(x)
{
if( var(x[-samples.indata]) == 0 ) return(1)
return( t.test( x[samples.indata], x[-samples.indata], var.equal=length(samples.indata)==1 )$p.value )
} )
suppressWarnings({
try.res <- try({
fdrtool.result <- fdrtool(local.env$p.g.m[,gr], statistic="pvalue", verbose=FALSE, plot=FALSE)
}, silent=TRUE)
})
if (!is(try.res,"try-error"))
{
# p.g.m[,gr] <- fdrtool.result$pval
local.env$fdr.g.m[,gr] <- fdrtool.result$lfdr
local.env$n.0.m[gr] <- fdrtool.result$param[1,"eta0"]
local.env$perc.DE.m[gr] <- 1 - local.env$n.0.m[gr]
} else
{
# p.g.m[,gr] <- order(apply(indata[,samples.indata,drop=FALSE],1,mean)) / nrow(indata)
local.env$fdr.g.m[,gr] <- local.env$p.g.m[,gr]
local.env$n.0.m[gr] <- 0.5
local.env$perc.DE.m[gr] <- 0.5
}
}
# average over group members
local.env$metadata <- do.call(cbind, by(t(env$prediction$predicted.metadata), env$prediction$prediction.group.labels, colMeans)[unique(env$prediction$prediction.group.labels)])
local.env$indata <- do.call(cbind, by(t(env$prediction$prediction.indata+env$prediction$prediction.indata.gene.mean),
env$prediction$prediction.group.labels,
colMeans)[unique(env$prediction$prediction.group.labels)])
local.env$indata.temp <- do.call(cbind, by(t(env$prediction$prediction.indata.temp ),
env$prediction$prediction.group.labels,
colSums)[unique(env$prediction$prediction.group.labels)])
local.env$indata.gene.mean <- rowMeans(local.env$indata)
if (local.env$preferences$feature.centralization)
{
local.env$indata <- local.env$indata - local.env$indata.gene.mean
}
local.env$group.colors <- env$prediction$prediction.group.colors[match(colnames(local.env$indata), env$prediction$prediction.group.labels)]
local.env$group.labels <- env$prediction$prediction.group.labels[match(colnames(local.env$indata), env$prediction$prediction.group.labels)]
names(local.env$group.labels) <- local.env$group.labels
names(local.env$group.colors) <- local.env$group.labels
local.env$output.paths <- c("CSV" = paste(env$files.name, "- Results/Prediction/Summary Sheets - Groups/CSV Sheets"),
"Summary Sheets Samples"= paste(env$files.name, "- Results/Prediction/Summary Sheets - Groups/Reports"))
local.env <- pipeline.detectSpotsSamples(local.env)
if (local.env$preferences$annotation.analysis)
{
local.env <- pipeline.genesetStatisticSamples(local.env)
}
pipeline.geneLists(local.env)
local.env$indata.temp <- as.list(unique(env$group.labels))
names(local.env$indata.temp) <- unique(env$group.labels)
for (gr in seq_along(unique(env$group.labels)))
{
samples.indata <- env$indata.temp[,which(env$group.labels==unique(env$group.labels)[gr])]
local.env$indata.temp[[gr]] <- list(major = sum(samples.indata == 0),
hetero = sum(samples.indata == 1),
minor = sum(samples.indata == 2))
}
# pipeline.geneLists(local.env)
pipeline.summarySheetsSamples(local.env)
#pipeline.htmlGroupSummary(local.env)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.