#' @export
#' @importFrom rlang .data
#' @importFrom stats lm
#' @import dplyr
#' @import graphics
#'
#' @title Linear model fitting of PurpleAir and federal PWFSL time series data
#'
#' @param sensor PurpleAir Timeseries \emph{pat} object.
#' @param startdate A startdate.
#' @param enddate A enddate.
#' @param showPlot Logical specifying whether to generate a model fit plot.
#' @param size Size of points.
#' @param pa_color Color of hourly points.
#' @param pwfsl_color Color of hourly points.
#' @param alpha Opacity of points.
#' @param lr_shape Symbol to use for linear model points.
#' @param lr_color Color of linear model plot points.
#' @param lr_lwd Width of linear regression line.
#' @param lr_lcolor Color of linear regression line.
#' @param lr_lalpha Opacity of linear regression line.
#' @param ts_shape Symbol to use for time series points.
#' @param xylim Vector of (lo,hi) limits used as limits on the correlation plot
#' axes -- useful for zooming in.
#' @param channel Data channel to use for PM2.5 -- one of "a", "b or "ab".
#' @param replaceOutliers Logical specifying whether or not to replace outliers.
#' @param qc_algorithm Named QC algorithm to apply to hourly aggregation stats.
#' @param min_count Aggregation bins with fewer than `min_count` measurements
#' will be marked as `NA`.
#' @param tz The ISO timezone.
#'
#' @description Produces a linear model between data from PurpleAir and data
#' from the closest PWFSL monitor.
#'
#' A diagnostic plot is produced if `showPlot = TRUE`.
#'
#' @return A linear model, fitting the `pat` PurpleAir readings to the closest
#' PWFSL monitor readings.
#'
asdv_externalFit <- function(
sensor = NULL,
startdate = NULL,
enddate = NULL,
showPlot = TRUE,
size = 1,
pa_color = "purple",
pwfsl_color = "black",
alpha = 0.5,
lr_shape = 15,
lr_color = "black",
lr_lwd = 1.5,
lr_lcolor = "tomato",
lr_lalpha = 0.45,
ts_shape = 1,
xylim = NULL,
channel = "ab",
replaceOutliers = TRUE,
qc_algorithm = "hourly_AB_01",
min_count = 20,
tz = NULL
) {
logger.debug('----- asdv_externalFit() -----')
# ----- Validate parameters --------------------------------------------------
if ( !AirSensor::sensor_isSensor (sensor) ) {
stop("Parameter 'sensor' is not a valid 'airsensor' object.")
}
if ( AirSensor::sensor_isEmpty(sensor) ) {
stop("Parameter 'sensor' has no data.")
}
# Crop to dates
#sensor <- PWFSLSmoke::monitor_subset(ws_monitor = sensor, tlim = c(startdate, enddate))
# For easier access
# meta <- sensor$meta
# data <- sensor$data
# ----- Assemble data --------------------------------------------------------
paHourly_data <- AirSensor::sensor_extractData(sensor)
names(paHourly_data) <- c("datetime", "pa_pm25")
# Get the PWFSL monitor data
monitorID <- sensor$meta$pwfsl_closestMonitorID
tlim <- range(paHourly_data$datetime)
pwfsl_data <-
PWFSLSmoke::monitor_load(tlim[1], tlim[2], monitorIDs = monitorID) %>%
#PWFSLSmoke::monitor_subset(tlim = tlim) %>%
PWFSLSmoke::monitor_extractData()
names(pwfsl_data) <- c("datetime", "pwfsl_pm25")
# Combine data from both monitors into one dataframe
both_data <- dplyr::full_join(paHourly_data, pwfsl_data, by = "datetime")
# Create a tidy dataframe appropriate for ggplot
# tidy_data <-
# both_data %>%
# tidyr::gather("source", "pm25", -.data$datetime)
# Define square xy limit now that we have the data for both monitors
if ( is.null(xylim) ) {
dataMin <- min(c(0, both_data$pa_pm25, both_data$pwfsl_pm25), na.rm = TRUE)
dataMax <- max(c(both_data$pa_pm25, both_data$pwfsl_pm25), na.rm = TRUE)
xylim <- c(dataMin, dataMax)
}
# ----- Linear model ---------------------------------------------------------
# Model PWSFL as a function of PurpleAir (data should lie on a line)
model <- lm(both_data$pwfsl_pm25 ~ both_data$pa_pm25, subset = NULL,
weights = NULL)
slope <- as.numeric(model$coefficients[2]) # as.numeric() to remove name
intercept <- as.numeric(model$coefficients[1])
r_squared <- summary(model)$r.squared
# Label for linear fit
equationLabel <-
ggplot2::annotate(
geom = "text",
x = 0.75 * xylim[2],
y = c(0.25, 0.15, 0.05) * xylim[2],
label = c(paste0("Slope = ", round(slope, digits = 2)),
paste0("Intercept = ", round(intercept, digits = 1)),
paste0("R\U00B2 = ", round(r_squared, digits = 3))) )
# ----- Construct Plot -------------------------------------------------------
if ( showPlot ) {
timezone <- tz
year <- strftime(sensor$data$datetime[1], "%Y", tz=timezone)
# LH Linear regression plot
lr_plot <-
both_data %>%
ggplot2::ggplot(ggplot2::aes(x = .data$pa_pm25, y = .data$pwfsl_pm25)) +
ggplot2::geom_point(size = size,
shape = lr_shape,
color = lr_color,
alpha = alpha) +
ggplot2::geom_smooth(formula = y ~ x, method = "lm", size = 0, alpha = 0.45) +
ggplot2::stat_smooth(formula = y ~ x, geom = "line", color = lr_lcolor, alpha = lr_lalpha,
method = "lm", size = lr_lwd) +
ggplot2::labs(title = "Correlation",
x = paste0("PurpleAir: \"", sensor$meta$monitorID, "\""),
y = paste0("Monitor: ", monitorID)) +
ggplot2::theme_bw() +
ggplot2::xlim(xylim) +
ggplot2::ylim(xylim) +
ggplot2::coord_fixed() + # square aspect ratio
equationLabel
plot <- lr_plot
}
return(plot)
}
#' @export
#' @importFrom rlang .data
#' @importFrom stats lm
#' @import dplyr
#' @import graphics
#'
#' @title Linear model fitting of channel A and B time series data
#'
#' @param pat PurpleAir Timeseries \emph{pat} object.
#' @param showPlot Logical specifying whether to generate a model fit plot.
#' @param whichPlot Which plot to show.
#' @param size Size of points.
#' @param a_color Color of time series channel A points.
#' @param b_color Color of time series channel B points.
#' @param alpha Opacity of points.
#' @param lr_shape Symbol to use for linear regression points.
#' @param lr_color Color of linear regression points.
#' @param lr_lwd Width of linear regression line.
#' @param lr_lcolor Color of linear regression line.
#' @param lr_lalpha Opacity of linear regression line.
#' @param ts_shape Symbol to use for time series points.
#' @param xylim Vector of (lo,hi) limits used as limits on the correlation plot
#' axes -- useful for zooming in.
#' @param tz a timezone.
#'
#' @description Uses a linear model to fit data from channel B to data from
#' channel A.
#'
#' A diagnostic plot is produced if `showPlot = TRUE`.
#'
#' @return A linear model, fitting the `pat` B channel readings to A channel
#' readings.
asdv_internalFit <- function(
pat = NULL,
showPlot = TRUE,
whichPlot = "lm",
size = 1,
a_color = "red",
b_color = "blue",
alpha = 0.25,
lr_shape = 15,
lr_color = "black",
lr_lwd = 1.5,
lr_lcolor = "tomato",
lr_lalpha = 0.45,
ts_shape = 1,
xylim = NULL,
tz = NULL
) {
# ----- Validate parameters --------------------------------------------------
MazamaCoreUtils::stopIfNull(pat)
if ( !pat_isPat(pat) )
stop("Parameter 'pat' is not a valid 'pa_timeseries' object.")
if ( pat_isEmpty(pat) )
stop("Parameter 'pat' has no data.")
# Remove any duplicate data records
pat <- pat_distinct(pat)
pat$data$datetime <- lubridate::with_tz(pat$data$datetime, tzone = tz)
# For easier access
meta <- pat$meta
data <- pat$data
if ( is.null(xylim) ) {
dataMin <- min(c(0, data$pm25_A, data$pm25_B), na.rm = TRUE)
dataMax <- max(c(data$pm25_A, data$pm25_B), na.rm = TRUE)
xylim <- c(dataMin, dataMax)
}
a_pm25 <-
data %>%
dplyr::select(.data$datetime, .data$pm25_A)
b_pm25 <-
data %>%
dplyr::select(.data$datetime, .data$pm25_B)
# Create a tidy dataframe appropriate for ggplot
tidy_data <-
dplyr::full_join(a_pm25, b_pm25, by = "datetime") %>%
tidyr::gather("channel", "pm25", -.data$datetime)
# ----- Linear model ---------------------------------------------------------
# Model A as a function of B (data should lie on a line)
model <- lm(data$pm25_A ~ data$pm25_B, subset = NULL, weights = NULL)
slope <- as.numeric(model$coefficients[2]) # as.numeric() to remove name
intercept <- as.numeric(model$coefficients[1])
r_squared <- summary(model)$r.squared
# Label for linear fit
equationLabel <-
ggplot2::annotate(
geom = "text",
x = 0.75 * xylim[2],
y = c(0.4, 0.3, 0.2) * xylim[2],
label = c(paste0("Slope = ", round(slope, digits = 2)),
paste0("Intercept = ", round(intercept, digits = 1)),
paste0("R\U00B2 = ", round(r_squared, digits = 3))) )
# ----- Plot -----------------------------------------------------------------
if ( showPlot ) {
timezone <- tz
year <- strftime(pat$data$datetime[1], "%Y", tz=timezone)
# LH Linear regression plot
lr_plot <-
pat$data %>%
ggplot2::ggplot(ggplot2::aes(x = .data$pm25_B, y = .data$pm25_A)) +
ggplot2::geom_point(size = size,
shape = lr_shape,
color = lr_color,
alpha = alpha) +
ggplot2::geom_smooth(formula = y ~ x, method = "lm", size = 0, alpha = 0.45) +
ggplot2::stat_smooth(formula = y ~ x, geom = "line", color = lr_lcolor, alpha = lr_lalpha,
method = "lm", size = lr_lwd) +
ggplot2::labs(title = "Channel Linear Regression",
x = "Channel B (\u03bcg / m\u00b3)",
y = "Channel A (\u03bcg / m\u00b3)") +
ggplot2::theme_bw() +
ggplot2::xlim(xylim) +
ggplot2::ylim(xylim) +
ggplot2::coord_fixed() + # square aspect ratio
equationLabel
# Set time axis to sensor local time
tidy_data$datetime <- lubridate::with_tz(tidy_data$datetime, tzone = timezone)
ts_plot <-
tidy_data %>%
ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = .data$datetime,
y = .data$pm25,
color = .data$channel),
size = size,
shape = ts_shape,
alpha = alpha) +
ggplot2::scale_color_manual(values = c(a_color, b_color),
name = "Channel",
labels = c("A", "B")) +
ggplot2::ylim(xylim) +
ggplot2::ggtitle(label = "Channel A/B Overlay",
subtitle = expression("PM"[2.5])) +
ggplot2::xlab(year) + ggplot2::ylab("\u03bcg / m\u00b3")
# Gather and arrange the linear regression and time series plots with a banner title
bannerText <- paste0("A / B Channel Comparision -- ", pat$meta$label)
bannerGrob <- grid::textGrob(bannerText,
just = "left",
x = 0.025,
gp = grid::gpar(fontsize = 18, col="grey50"))
plot <- gridExtra::grid.arrange(bannerGrob, lr_plot, ts_plot,
ncol = 1, heights = c(1, 6, 3))
if ( whichPlot == "lm" ) {
return(lr_plot)
} else if ( whichPlot == "ab" ) {
return(ts_plot)
} else {
return(plot)
}
}
# # ----- Return ---------------------------------------------------------------
#
# return(invisible(model))
}
#' @title Instantiate a pm25 diurnal ggplot (Clone from AirMonitorPlots)
#'
#' @description
#' Create a plot using ggplot with default mappings and styling. Layers can then
#' be added to this plot using \code{ggplot2} syntax.
#'
#' @inheritParams custom_pm25DiurnalScales
#'
#' @param ws_data Default dataset to use when adding layers. Must be either a
#' \code{ws_monitor} object or \code{ws_tidy} object.
#' @param startdate Desired startdate for data to include, in a format that can
#' be parsed with \link{parseDatetime}.
#' @param enddate Desired enddate for data to include, in a format that can be
#' parsed with \link{parseDatetime}.
#' @param timezone Timezone to use to set hours of the day
#' @param shadedNight add nighttime shading based on of middle day in selected
#' period
#' @param mapping Default mapping for the plot
#' @param base_size Base font size for theme
#' @param ... Additional arguments passed on to
#' \code{\link{custom_pm25DiurnalScales}}.
#'
#' @import ggplot2
#' @importFrom rlang .data
#' @importFrom dplyr filter
#' @importFrom MazamaCoreUtils parseDatetime dateRange
#' @importFrom lubridate hour minute
#' @importFrom PWFSLSmoke monitor_isMonitor monitor_toTidy monitor_isTidy timeInfo
#' @export
#'
asdv_pm25Diurnal <- function(
ws_data,
startdate = NULL,
enddate = NULL,
timezone = NULL,
ylim = NULL,
shadedNight = TRUE,
mapping = aes_(x = ~hour, y = ~pm25),
base_size = 11,
...
) {
# ----- Validate Parameters --------------------------------------------------
if ( !is.logical(shadedNight) )
stop("shadedNight must be logical")
if ( !is.numeric(base_size) )
stop("base_size must be numeric")
if ( monitor_isMonitor(ws_data) ) {
ws_tidy <- monitor_toTidy(ws_data)
} else if ( monitor_isTidy(ws_data) ) {
ws_tidy <- ws_data
} else {
stop("ws_data must be either a ws_monitor object or ws_tidy object.")
}
# Determine the timezone (code borrowed from custom_pm25TimeseriesScales.R)
if ( is.null(timezone) ) {
if ( length(unique(ws_tidy$timezone) ) > 1) {
timezone <- "UTC"
xlab <- "Hour of Day (UTC)"
} else {
timezone <- ws_tidy$timezone[1]
xlab <- "Hour of Day (Local)"
}
} else if ( is.null(xlab) ) {
xlab <- paste0("Time of Day (", timezone, ")")
}
if ( !is.null(startdate) ) {
startdate <- parseDatetime(startdate, timezone = timezone)
if ( startdate > range(ws_tidy$datetime)[2] ) {
stop("startdate is outside of data date range")
}
} else {
startdate <- range(ws_tidy$datetime)[1]
}
if ( !is.null(enddate) ) {
enddate <- parseDatetime(enddate, timezone = timezone)
if ( enddate < range(ws_tidy$datetime)[1] ) {
stop("enddate is outside of data date range")
}
} else {
enddate <- range(ws_tidy$datetime)[2]
}
# ----- Prepare data ---------------------------------------------------------
# MazamaCoreUtils::dateRange() was built for this!
dateRange <- dateRange(startdate, enddate, timezone = timezone, ceilingEnd = TRUE)
startdate <- dateRange[1]
enddate <- dateRange[2]
# Subset based on startdate and enddate
ws_tidy <- ws_tidy %>%
filter(.data$datetime >= startdate) %>%
filter(.data$datetime <= enddate)
# Add column for 'hour'
ws_tidy$hour <- as.numeric(strftime(ws_tidy$datetime, "%H", tz = timezone))
ws_tidy$day <- strftime(ws_tidy$datetime, "%Y%m%d", tz = timezone)
# ----- Create plot ----------------------------------------------------------
gg <- ggplot(ws_tidy, mapping) +
theme_pwfsl(base_size = base_size) +
custom_pm25DiurnalScales(ws_tidy, xlab = xlab, ylim = ylim, ...)
# Calculate day/night shading
if (shadedNight) {
# Get the sunrise/sunset information
ti <- timeInfo(
ws_tidy$datetime,
longitude = ws_tidy$longitude[1],
latitude = ws_tidy$latitude[1],
timezone = ws_tidy$timezone[1]
)
# Extract the middle row
ti <- ti[round(nrow(ti) / 2), ]
# Get sunrise and sunset in units of hours
sunrise <- hour(ti$sunrise) + (minute(ti$sunrise) / 60)
sunset <- hour(ti$sunset) + (minute(ti$sunset) / 60)
# Add shaded night
scales <- layer_scales(gg)
morning <- annotate(
"rect",
xmin = scales$x$limits[1],
xmax = sunrise,
ymin = scales$y$limits[1],
ymax = scales$y$limits[2],
fill = "black",
alpha = 0.1
)
night <- annotate(
"rect",
xmin = sunset,
xmax = scales$x$limits[2],
ymin = scales$y$limits[1],
ymax = scales$y$limits[2],
fill = "black",
alpha = 0.1
)
gg <- gg + morning + night
}
# ----- Return ---------------------------------------------------------------
return(gg)
}
#' @title Add hourly averages to a plot
#'
#' @description
#' This function calculates the mean y-value for each x-value. Should be used
#' only when \code{x} is discrete. The resulting mean can be mapped to any
#' aesthetic, specified with the \code{output} parameter.
#'
#' @param mapping Set of aesthetic mappings created by \code{aes()}. If
#' specified and \code{inherit.aes = TRUE} (the default), it is combined with
#' the default mapping at the top level of the plot. You must supply
#' \code{mapping} if there is no plot mapping.
#' @param data The data to be displayed in this layer. There are three options:
#' if \code{NULL}, the default, the data is inherited from the plot data. A
#' \code{data.frame} or other object, will override the plot data. A
#' \code{function} will be called with a single argument, the plot data. The
#' return value must be a \code{data.frame}, and will be used as the layer
#' data.
#' @param output "AQIColors", "mv4Colors", "scaqmd", "y"
#' @param input The value to find the mean of. If \code{NULL}, the default
#' \code{y} value will be used.
#' @param geom The geometic object to display the data
#' @param position Position adjustment, either as a string, or the result of a
#' call to a position adjustment function.
#' @param na.rm remove NA values from data
#' @param show.legend logical indicating whether this layer should be included
#' in legends.
#' @param inherit.aes if \code{FALSE}, overrides the default aesthetics, rather
#' than combining with them. This is most useful for helper functions that
#' define both data and the aesthetics and shouldn't inherit behaviour from
#' the default plot specificatino, eg \code{borders()}.
#' @param ... additional arguments passed on to \code{layer()}, such as
#' aesthetics.
#'
#' @import ggplot2
#' @importFrom rlang parse_expr
#' @importFrom dplyr group_by summarise
#' @export
stat_meanByHour <- function(
mapping = NULL,
data = NULL,
input = NULL,
output = "y",
geom = "bar",
position = "identity",
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
...
) {
if (!is.null(input)) {
if (is.null(mapping)) {
mapping <- aes_string(input = input)
} else {
mapping$input <- parse_expr(input)
}
}
list(
layer(
stat = StatMeanByGroup,
data = data,
mapping = mapping,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
output = output,
input = input,
na.rm = na.rm,
...
)
)
)
}
StatMeanByGroup <- ggplot2::ggproto(
"StatMeanByGroup",
ggplot2::Stat,
# BEGIN compute_group function
compute_group = function(data,
scales,
params,
input,
output,
na.rm) {
df <- data
if (is.null(input)) df$input <- df$y
means <- df %>%
group_by(.data$x) %>%
summarise(
mean = mean(.data$input, na.rm = na.rm),
mean_y = mean(.data$y, na.rm = TRUE)
)
# Set x and y
data <- data.frame(
x = means$x,
y = means$mean_y
)
# Set output aesthetic
if (output %in% c("AQIColors", "mv4Colors")) {
# Add column for AQI level
data$aqi <- .bincode(means$mean, AQI$breaks_24, include.lowest = TRUE)
if (!"colour" %in% names(data)) {
if (output == "mv4Colors") {
data$colour <- AQI$mv4Colors[data$aqi]
} else {
data$colour <- AQI$colors[data$aqi]
}
}
if (!"fill" %in% names(data)) {
if (output == "mv4Colors") {
data$fill <- AQI$mv4Colors[data$aqi]
} else {
data$fill <- AQI$colors[data$aqi]
}
}
} else if (output == "scaqmd") {
scaqmd_breaks <- c(0, 12, 35, 55, 75, 6000)
scaqmd_colors <- c("#abe3f4", "#118cba", "#286096", "#8659a5", "#6a367a")
data$aqi <- .bincode(means$mean, breaks = scaqmd_breaks, include.lowest = TRUE)
if (!"colour" %in% names(data)) {
data$colour <- scaqmd_colors[data$aqi]
}
if (!"fill" %in% names(data)) {
data$fill <- scaqmd_colors[data$aqi]
}
} else {
# Map the mean to the correct aesthetic
data[output] <- means$mean
}
return(data)
}
# END compute_group function
)
#' @title Theme for PWFSL plots
#'
#' @description
#' Applies the package standard theme to a \emph{ggplot} plot object.
#'
#' @param base_size Base font size.
#' @param base_family Base font family.
#'
#' @return A \emph{ggplot} theme.
#'
#' @import ggplot2
#' @export
theme_pwfsl <- function(
base_size = 11,
base_family = ""
) {
theme_classic(
base_size = base_size,
base_family = base_family
) +
theme(
# All text is black
text = element_text(color = "black"),
# A little white space around the edges
plot.margin = margin(
unit(1.5 * base_size, "pt"), # Top
unit(1.0 * base_size, "pt"), # Right
unit(1.5 * base_size, "pt"), # Bottom
unit(1.0 * base_size, "pt") # Left
),
# Axes
axis.title = element_text(
size = 1.2 * base_size
),
axis.text = element_text(
size = 1.0 * base_size
),
# Y-axis
###axis.line.y = element_blank(),
axis.title.y = element_text(
margin = margin(r = 1.0 * base_size)
),
###axis.ticks.y = element_blank(),
axis.text.y = element_text(
margin = margin(r = 0.5 * base_size)
),
# X-axis
###axis.line.x = element_blank(),
axis.title.x = element_text(
margin = margin(t = 1.0 * base_size)
),
###axis.ticks.x = element_blank(),
axis.text.x = element_text(
margin = margin(t = 1.0 * base_size)
),
# Legend
legend.text = element_text(
size = 1.0 * base_size,
face = "italic",
margin = margin(r = 50)
),
# Box outline and grid lines
panel.border = element_rect(fill = NA),
panel.grid.major = element_line(
linetype = "dotted",
size = 0.3,
colour = "grey"
),
panel.grid.minor.x = element_line(
linetype = "dotted",
size = 0.1,
colour = "grey"
),
panel.grid.minor.y = element_blank(),
# Title
plot.title = element_text(
color = "black",
size = 1.5 * base_size,
hjust = 0.5,
vjust = 5,
face = "bold"
)
)
}
#' @title PWFSL PM2.5 diurnal scales
#'
#' @description
#' Add PWFSL-style x-axis and y-axis scales suitable for a plot showing PM2.5
#' data as a funciton of hour of the day.
#'
#' @param data pm25 timeseries data. Should match the default dataset of the
#' plot.
#' @param ylim custom y-axis limits. This function will apply a default limit
#' depending on the data.
#' @param xlab Custom x-axis label. If \code{NULL} a default xlab will be
#' generated.
#' @param ylab Custam y-axis label.
#' @param yexp Vector of range expansion constants used to add some padding
#' around the data on the y-axis, to ensure that they are placed some distance
#' away from the axes.
#' @param xexp Vector of range expansion constants used to add some padding
#' around the data on the x-axis, to ensure that they are placed some distance
#' away from the axes.
#' @param offsetBreaks if \code{TRUE}, x-axis ticks and guides are offset by
#' 0.5.
#'
#' @importFrom rlang .data
#' @importFrom PWFSLSmoke monitor_isMonitor monitor_toTidy monitor_isTidy
#' @importFrom dplyr case_when
#' @import ggplot2
#' @export
custom_pm25DiurnalScales <- function(
data = NULL,
ylim = NULL,
xlab = NULL,
ylab = "PM2.5 (\u00b5g/m3)",
yexp = c(0.05, 0.05),
xexp = c(0.05, 0.05),
offsetBreaks = FALSE
) {
# Validate parameters --------------------------------------------------------
if (monitor_isMonitor(data)) {
data <- monitor_toTidy(data)
} else if (monitor_isTidy(data)) {
data <- data
} else {
stop("data must be either a ws_monitor object or ws_tidy object.")
}
# Calculate axis limits ----------------------------------------------------
# Default to well defined y-axis limits for visual stability
if (is.null(ylim)) {
ylo <- 0
ymax <- max(data$pm25, na.rm = TRUE)
yhi <- case_when(
ymax <= 50 ~ 50,
ymax <= 100 ~ 100,
ymax <= 200 ~ 200,
ymax <= 400 ~ 400,
ymax <= 600 ~ 600,
ymax <= 1000 ~ 1000,
ymax <= 1500 ~ 1500,
TRUE ~ 1.05 * ymax
)
} else {
# Standard y-axis limits
ylo <- ylim[1]
yhi <- ylim[2]
}
xmin <- 0 - (23 * xexp[1])
xmax <- 23 + (23 * xexp[2])
# Calculate breaks -----------------------------------------------------------
## NOTE:
# `ifelse` is not used, because the condition `offsetBreaks` is length 1,
# which means the output of `ifelse` would also be a 1 element vector.
if (offsetBreaks) {
breaks <- seq(-0.5, 22.5, by = 3)
} else {
breaks <- seq(0, 22, by = 3)
}
if (offsetBreaks) {
minor_breaks <- seq(-0.5, 22.5, by = 1)
} else {
minor_breaks <- seq(0, 22, by = 1)
}
# Add scales -----------------------------------------------------------------
list(
scale_x_continuous(
breaks = breaks,
minor_breaks = seq(0, 23, by = 1),
labels = c("midnight", "3am", "6am", "9am", "Noon", "3pm", "6pm", "9pm"),
limits = c(xmin, xmax),
expand = c(0, 0)
),
scale_y_continuous(
limits = c(ylo - (yexp[1] * yhi), yhi + (yexp[2] * yhi)),
expand = c(0, 0)
),
ylab(ylab),
xlab(xlab
)
)
}
#' Sensor Monitor Correlation Plot
#'
#' @param sensor A airsensor object
#' @param pwfsl A ws_monitor object
#'
#' @return a ggplot object
#' @export
#'
lmSensorMonitor <- function(sensor, pwfsl) {
slab <- sensor$meta$label
#mlab <- sensor$meta$pwfsl_closestMonitorID
sensor <- PWFSLSmoke::monitor_toTidy(sensor)
dates <- range(sensor$datetime)
monitor <- PWFSLSmoke::monitor_toTidy(pwfsl)
mlab <- pwfsl$meta$siteName[1]
df <- dplyr::left_join(sensor, monitor, by = 'datetime', suffix = c('.pwfsl', '.pa'))
dataMin <- min(c(0, df$pm25.pa, df$pm25.pwfsl), na.rm = TRUE)
dataMax <- max(c(df$pm25.pa, df$pm25.pwfsl), na.rm = TRUE)
xylim <- c(dataMin, dataMax)
model <- lm(df$pm25.pa ~ df$pm25.pwfsl, subset = NULL,
weights = NULL, na.action = 'na.omit')
slope <- as.numeric(model$coefficients[2]) # as.numeric() to remove name
intercept <- as.numeric(model$coefficients[1])
r_squared <- summary(model)$r.squared
# # Label for linear fit
equationLabel <-
ggplot2::annotate(
geom = "text",
x = 0.75 * xylim[2],
y = c(0.25, 0.15, 0.05) * xylim[2],
label = c(paste0("Slope = ", round(slope, digits = 2)),
paste0("Intercept = ", round(intercept, digits = 1)),
paste0("R\U00B2 = ", round(r_squared, digits = 3))) )
#print(str(df))
ggplot(df, aes(x = .data$pm25.pa, y = .data$pm25.pwfsl)) +
geom_point(color = 'black', shape = 15, alpha = 0.2, size = 1) +
geom_smooth(formula = y ~ x, method = "lm", se = FALSE, color = 'red', alpha = 0.3) +
xlim(xylim) +
ylim(xylim) +
xlab(slab) +
ylab(mlab) +
ggtitle(paste0(slab, " - ", mlab, " Regression")) +
theme_light() +
coord_fixed() +
equationLabel
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.