#-------------------Simulation Template--------------------------------------------
#Katrin Marques Magalhaes
#Marc Kerstan
#Manuel Huth
#-------------------Load Libraries-------------------------------------------------
#devtools::install(dependencies = TRUE)
#devtools::install_github("manuhuth/hidiTS")
library(hidiTS)
library(optimParallel)
#-------------------Specify Iterations and other Parameters------------------------
rm(list = ls())
econometrician <- 'Manu' #either 'Katrin', 'Marc' or 'Manu'
q_simulation <- c(3) #vector of number of factors per data set
T_simulation <- c(7, 15, 20) #vector of number of periods per data set
n_simulation <- c(5, 15, 20, 30) #seq(10,60, 5) #vector of number of signals per data set
number_iterations <- 500 #number of observations per combination of (q, T, n)
type_sigma_U <- 'diagonal'
#-------------------Playground Katrin---------------------------------------------
if (econometrician == 'Katrin'){
print('Roses are red, model the shock, this code is gonna rock!')
lamb <- 3^0.5
}
#-------------------Playground Marc-----------------------------------------------
if (econometrician == 'Marc'){
print('May the kernels and bug fixes be with you! #Bugsafari')
lamb <- 3
}
#-------------------Playground Manu----------------------------------------------
if (econometrician == 'Manu'){
lamb <- 0.5
}
#-------------------Change Nothing From Here Onward----------------------------------------------------------------------------------------------------------------------
#-------------------Define Cluster-----------------------------------------------
cl <- makeCluster(detectCores()-1)
setDefaultCluster(cl = cl)
#------------------Simulation Study----------------------------------------------
seed_index <- 1
simulated_data <- as.data.frame(c())
start_time <- Sys.time()
for (q in q_simulation) {# start for q
for (T in T_simulation) {# start for T
for (n in n_simulation) {# start for n
save_iterations <- c()
Gamma_sim <- diag(-sort(-runif(q, 0.2, 0.8)))
Lambda_sim <- matrix(runif(n*q, -lamb, lamb), n, q)
for (iterations in 1:number_iterations){ # start for iterations
tryCatch({
set.seed(seed_index)
seed_index = seed_index + 1
clusterExport(cl, list('n', 'q', 'T'))
data <- sim_data(p = n, T = T, dim_F= q, lags_F=1, lags_X=0, ar_F=1, ar_Y=1, low_X = -lamb, up_X = lamb, A = list(Gamma_sim), L = list(Lambda_sim),
low_F = 0.3, up_F = 0.6, burn_in = 20, data_only = FALSE, only_stationary = TRUE, vcv_mu = diag(n),
adjust_diag = FALSE, geometric_F =TRUE, diag_F = TRUE, geometric_X =FALSE, geometric_Y =FALSE)
X_true <- data$X
eigenvalues_x <- eigen(var(t(data$X)))$values
#compute Information Criteria
ic_pca <- Information.criteria(data=data,n=n,p=0,q=q,k=1,t=T, est.method=1, kmax=5, ml_parallel = TRUE, ml_maxit = 5)
start_time_pca <- Sys.time()
placeholder <- pca_estimator(X_true, q)
end_time_pca <- Sys.time()
time_pca <- end_time_pca - start_time_pca
ic_ml <- Information.criteria(data=data,n=n,p=0,q=q,k=1,t=T, est.method=2, kmax=5, ml_parallel = TRUE, ml_maxit = 5)
#get all optimal estimates
pca_bai_q <-ic_pca$number_BaiNg #Bai & NG optimal q pca
pca_bic_q <- ic_pca$number_BIC #Bayesian optimal q pca
ml_bai_q <- ic_ml$number_BaiNg #Bai & NG optimal q maximum likelihood
ml_bic_q <- ic_ml$number_BIC #Bayesian optimal q maximum likelihood
pca_bai_right = pca_bai_q == q
pca_bic_right = pca_bic_q == q
ml_bai_right = ml_bai_q == q
ml_bic_right = ml_bic_q == q
bai_equals_bic <- pca_bai_q == pca_bic_q
true_f <- data$F
true_lambda <- data$L[[1]]
pca_bic_f <- ic_pca$F_BIC
pca_bic_lambda <- ic_pca$Lambda_BIC
pca_bai_f <- ic_pca$F_BaiNg
pca_bai_lambda <- ic_pca$Lambda_BaiNg
pca_trueq_f <- ic_pca$F_true
pca_trueq_lambda <- ic_pca$Lambda_true
ml_bic_f <- ic_ml$F_BIC
ml_bic_lambda <- ic_ml$Lambda_BIC
ml_bai_f <- ic_ml$F_BaiNg
ml_bai_lambda <- ic_ml$Lambda_BaiNg
ml_trueq_f <- ic_ml$F_true
ml_trueq_lambda <- ic_ml$Lambda_true
start_time_ml <- Sys.time()
ml_true_q <- estimate_f(data_x=data,n=n,p=0,q=q,k=1,t=T,gamma_res=TRUE,lambda_res=TRUE,sigma_u_diag=TRUE,it=1,
method = "L-BFGS-B", parallel = TRUE, max_it = 5, forward = TRUE)
end_time_ml <- Sys.time()
time_ml <- end_time_ml - start_time_ml
ml_trueq_f <- ml_true_q$f_final
ml_trueq_lambda <- ml_true_q$lambda[[1]]
#transform all estimates
true_f_transformed <- convert_factors_dgp(data)$F
true_lambda_transformed <- convert_factors_dgp(data)$Lambda
#pca_bic_f_transformed <- convert_factors_ML(Lambda=pca_bic_lambda, factors=pca_bic_f, q=pca_bic_q)$F
#pca_bic_lambda_transformed <- convert_factors_ML(Lambda=pca_bic_lambda, factors=pca_bic_f, q=pca_bic_q)$Lambda
#pca_bai_f_transformed <- convert_factors_ML(Lambda=pca_bai_lambda, factors=pca_bai_f, q=pca_bai_q)$F
#pca_bai_lambda_transformed <- convert_factors_ML(Lambda=pca_bai_lambda, factors=pca_bai_f, q=pca_bai_q)$Lambda
pca_trueq_f_transformed <- convert_factors_ML(Lambda=pca_trueq_lambda, factors=pca_trueq_f, q=q)$F
pca_trueq_lambda_transformed <- convert_factors_ML(Lambda=pca_trueq_lambda, factors=pca_trueq_f, q=q)$Lambda
#ml_bic_f_transformed <- convert_factors_ML(Lambda=ml_bic_lambda, factors=ml_bic_f, q=ml_bic_q)$F
#ml_bic_lambda_transformed <- convert_factors_ML(Lambda=ml_bic_lambda, factors=ml_bic_f, q=ml_bic_q)$Lambda
#ml_bai_f_transformed <- convert_factors_ML(Lambda=ml_bai_lambda, factors=ml_bai_f, q=ml_bai_q)$F
#ml_bai_lambda_transformed <- convert_factors_ML(Lambda=ml_bai_lambda, factors=ml_bai_f, q=ml_bai_q)$Lambda
ml_trueq_f_transformed <- convert_factors_ML(Lambda=ml_trueq_lambda, factors=ml_trueq_f, q=q)$F
ml_trueq_lambda_transformed <- convert_factors_ML(Lambda=ml_trueq_lambda, factors=ml_trueq_f, q=q)$Lambda
#compute MSE of f and f_hat for (true?) all estimates
mses <- c()
for (index_trans in 1:q) {
mse_pca1 <- mean((true_f_transformed[index_trans,] - pca_trueq_f_transformed[index_trans,])^2)
mse_pca2 <- mean((true_f_transformed[index_trans,] + pca_trueq_f_transformed[index_trans,])^2)
mse_pca <- min(mse_pca1, mse_pca2)
mse_ml1 <- mean((true_f_transformed[index_trans,] - ml_trueq_f_transformed[index_trans,])^2)
mse_ml2 <- mean((true_f_transformed[index_trans,] + ml_trueq_f_transformed[index_trans,])^2)
mse_ml <- min(mse_ml1, mse_ml2)
mses <- c(mses, 'mse_pca_f' =mse_pca, 'mse_ml_f' = mse_ml )
}
#compute explained variance for all estimates
var_X <- var(t(X_true))
var_X_diag <- diag(var_X)
pca_bic_f_variance_explained <- mean(diag(pca_bic_lambda %*% var(t(matrix(pca_bic_f,pca_bic_q ,T))) %*% t(pca_bic_lambda)) / var_X_diag)
pca_bai_f_variance_explained <- mean(diag(pca_bai_lambda %*% var(t(matrix(pca_bai_f,pca_bai_q ,T))) %*% t(pca_bai_lambda)) / var_X_diag)
pca_trueq_f_variance_explained <- mean(diag(pca_trueq_lambda %*% var(t(matrix(pca_trueq_f, q ,T))) %*% t(pca_trueq_lambda)) / var_X_diag)
ml_bic_f_variance_explained <- mean(diag(ml_bic_lambda %*% var(t(matrix(ml_bic_f,ml_bic_q,T))) %*% t(ml_bic_lambda)) / var_X_diag)
ml_bai_f_variance_explained <- mean(diag(ml_bai_lambda %*% var(t(matrix(ml_bai_f,ml_bai_q,T))) %*% t(ml_bai_lambda)) / var_X_diag)
ml_trueq_f_variance_explained <- mean(diag(ml_trueq_lambda %*% var(t(matrix(ml_trueq_f, q ,T))) %*% t(ml_trueq_lambda)) / var_X_diag)
#variance_explained_true <- true_lambda %*% var(t(true_f)) %*% t(true_lambda)
#compute X_hat
pca_bic_f_X_hat <- pca_bic_lambda %*% pca_bic_f
pca_bai_f_X_hat <- pca_bai_lambda %*% pca_bai_f
pca_trueq_f_X_hat <- pca_trueq_lambda %*% pca_trueq_f
ml_bic_f_X_hat <- ml_bic_lambda %*% ml_bic_f
ml_bai_f_X_hat <- ml_bai_lambda %*% ml_bai_f
ml_trueq_f_X_hat <- ml_trueq_lambda %*% ml_trueq_f
#compute MSE of X and X_hat
pca_bic_mse_X <- mean((X_true - pca_bic_f_X_hat)^2)
pca_bai_mse_X <- mean((X_true - pca_bai_f_X_hat)^2)
pca_trueq_mse_X <- mean((X_true - pca_trueq_f_X_hat)^2)
ml_bic_mse_X <- mean((X_true - ml_bic_f_X_hat)^2)
ml_bai_mse_X <- mean((X_true - ml_bai_f_X_hat)^2)
ml_trueq_mse_X <- mean((X_true - ml_trueq_f_X_hat)^2)
#create vector to save over iterations
ev_named <- eigenvalues_x[1:5]
names(ev_named) <- c('ev1', 'ev2', 'ev3','ev4', 'ev5')
save_for_iterations <- c(ev_named, 'pca_bai_right'=pca_bai_right,'pca_bic_right'=pca_bic_right,'ml_bai_right'=ml_bai_right,'ml_bic_right'=ml_bic_right,
'bic_equal_bai' = bai_equals_bic, mses, 'VE_pca_bic' =pca_bic_f_variance_explained, 'VE_pca_bai' = pca_bai_f_variance_explained,
'VE_pca_trueq' = pca_trueq_f_variance_explained, 'VE_ml_bic' =ml_bic_f_variance_explained, 'VE_ml_bai' = ml_bai_f_variance_explained,
'VE_ml_trueq' = ml_trueq_f_variance_explained, 'mse_pca_bic_X_Xhat' = pca_bic_mse_X, 'mse_pca_bai_X_Xhat' = pca_bai_mse_X,
'mse_pca_trueq_X_Xhat' = pca_trueq_mse_X, 'mse_ml_bic_X_Xhat' = ml_bic_mse_X, 'mse_ml_bai_X_Xhat' = ml_bai_mse_X,
'mse_ml_trueq_X_Xhat' = ml_trueq_mse_X, 'time_pca'=time_pca, 'time_ml'=time_ml)
save_iterations <- rbind(save_iterations, save_for_iterations)
now_time <- Sys.time()
time <- now_time - start_time
print(paste('q=',q,'; n=',n, '; T=',T, '; iteration=',iterations, '; time since start = ',round(time, 4),units(time), sep=''))
}, error=function(e){cat("ERROR :",conditionMessage(e), "\n", 'seed=', seed_index ,'q=',q,'; n=',n, '; T=',T)})
}# end for iterations
#append vector to huge matrix (or average over number_iterations and save rest in list)
save_for_simulated_data <- data.frame(t(colMeans(save_iterations)), 'n' = n, 'T'=T, 'q'=q, 'p'=0, 'k'=1, 'number of iterations per setting' = number_iterations,
'maxit' = 5, 'max_factors_IC' = 6, 'DGP' = 'stationary', 'sigma_u' = type_sigma_U)
colname <- names(save_for_simulated_data)
simulated_data <- rbind(simulated_data, save_for_simulated_data)
}# end for n
}# end for T
}# end for q
colnames(simulated_data) <- colname
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.