#' Simulating spatio-temporal Poisson point processes on a linear network
#'
#' This function simulates realisations of a spatio-temporal Poisson point process on a linear network.
#'
#' @usage rpoistlpp(lambda,a,b,L,check=FALSE,lmax=NULL,nsim=1)
#'
#' @param lambda intensity of the point process. it can be either a number, function of location and time, or an abject of class \code{stlppint}
#' @param a lower bound of time period
#' @param b upper bound of time period
#' @param L a linear network
#' @param check logical value indicating whether to check that all the (x,y) points lie inside the specified window. see \code{\link{ppp}}
#' @param lmax upper bound for the values of \code{labmda}. this is optional
#' @param nsim number of simulated patterns to generate
#'
#' @seealso \code{\link{density.stlpp}}
#'
#' @author Mehdi Moradi <m2.moradi@yahoo.com>
#'
#' @returns
#' an object of class \code{\link{stlpp}} if nsim=1, otherwise a list of objects of class \code{\link{stlpp}}.
#'
#' @details
#' This function generates realisations of a spatio-temporal poisson point process on a linear network based on an intensity function lambda and lower/upper bounds a and b.
#'
#'
#' @references Moradi, M., & Mateu, J. (2020). First-and second-order characteristics of spatio-temporal point processes on linear networks. Journal of Computational and Graphical Statistics, 29(3), 432-443.
#'
#'
#' @examples
#' X <- rpoistlpp(0.2,a=0,b=5,L=easynet)
#' X
#'
#' @export
rpoistlpp <- function(lambda,a,b,L,check=FALSE,lmax=NULL,nsim=1){
if (!is.numeric(lambda) & !is.function(lambda) & !any(class(lambda)=="stlppint"))
stop(" lambda should be a number, a function, or an object of class stlppint")
if(nsim > 1) {
out <- list()
for (i in 1:nsim) {
out[[i]] <- rpoistlpp(lambda,a=a,b=b,L=L,nsim=1,check=check,lmax=lmax)
}
return(out)
}
if (is.numeric(lambda)){
if (!inherits(L,"linnet")) stop("L should be a linear network")
if (a >= b) stop("lower bound must be smaller than upper bound")
n <- rpois(1,lambda*volume(L)*(b-a))
X <- runiflpp(n,L)
t <- runif(npoints(X),a,b)
stlpp <- data.frame(x=X$data$x,y=X$data$y,t)
}
else if(is.function(lambda)){
if (!inherits(L,"linnet")) stop("L should be a linear network")
if (a >= b) stop("lower bound must be smaller than upper bound")
if(is.null(lmax)){
Llines <- as.psp(L)
linemask <- as.mask.psp(Llines)
lineimage <- as.im(linemask)
xx <- raster.x(linemask)
yy <- raster.y(linemask)
mm <- linemask$m
xx <- as.vector(xx[mm])
yy <- as.vector(yy[mm])
pixelcentres <- ppp(xx, yy, window=as.rectangle(linemask), check=check)
pixelcentres <- unique.ppp(pixelcentres)
pixdf <- data.frame(xc=xx, yc=yy)
p2s <- project2segment(pixelcentres, Llines)
projloc <- as.data.frame(p2s$Xproj)
projmap <- as.data.frame(p2s[c("mapXY", "tp")])
projdata <- cbind(pixdf, projloc, projmap)
gridx <- p2s$Xproj$x
gridy <- p2s$Xproj$y
df <- data.frame(gridx,gridy)
df <- df[!duplicated(df), ]
grid <- lpp(df,L)
grid <- unique(grid)
t0 <- runif(npoints(grid),a,b)
lmax=max(lambda(grid$data$x,grid$data$y,t0))
}
mean <- lmax*volume(L)*(b-a)
n <- rpois(1,mean)
unipoint <- runiflpp(n,L)
hlpp <- cbind(unipoint$data$x,unipoint$data$y,runif(n,a,b))
prob <- lambda(hlpp[,1],hlpp[,2],hlpp[,3])/lmax
if(check) {
if(any(prob < 0))
warning("Negative values of lambda obtained")
if(any(prob > 1))
warning("lmax is not an upper bound for lambda")
}
u <- runif(length(hlpp[,1]))
retain <- (u <= prob)
stlpp <- hlpp[retain,]
stlpp <- data.frame(x=stlpp[,1],y=stlpp[,2],t=stlpp[,3])
}
else if(any(class(lambda)=="stlppint")){
Y <- attr(lambda,"stlpp")
a <- Y$time[1]
b <- Y$time[2]
L <- Y$domain
lmax <- max(unlist(lapply(lambda, max)))
mean <- lmax*volume(L)*(b-a)
n <- rpois(1,mean)
unipoint <- runiflpp(n,L)
hlpp <- stlpp(unipoint,T=runif(npoints(unipoint),a,b),L=L)
prob <- lambda[hlpp]/lmax
if(check) {
if(any(prob < 0))
warning("Negative values of lambda obtained")
if(any(prob > 1))
warning("lmax is not an upper bound for lambda")
}
u <- runif(npoints(hlpp))
retain <- (u <= prob)
stlpp <- hlpp[retain]
}
out <- ppx(data=stlpp,domain = L,coord.type = c("s","s","t"))
class(out) <- c("stlpp","ppx")
out$time <- c(a,b)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.