View source: R/utility_functions.R
vd_UMAP | R Documentation |
Generate UMAPs with each variance decomposition covariate overlaid.
vd_UMAP(object, vd_model.list)
object |
Seurat Object |
vd_model.list |
Output from vd_Formula(). |
List ggplot handles, one for each model covariate.
Nicholas Mikolajewicz
vd_Run
parameter.list <- list(
covariates = c( "cluster", "percent.mt", "batch", "cycle", "seq.coverage"),
interactions = c("batch:cluster")
)
# step 1: model formulation
vd_model.list <- vd_Formula(object = so.query,
covariates = parameter.list$covariates,
interactions = parameter.list$interactions)
# step 2: prep model inputs
vd_inputs.list <- vd_Inputs(object = so.query, vd_model.list = vd_model.list, features = NULL,
pct.min = 0.9, variable.features = F, subsample.factor = 1)
# step 3: run variance decomposition
vd_results.list <- vd_Run(vd_inputs.list, n.workers = 20)
# step 4 (optional): visualize UMAP distribution of covariates
plt.umap.list <- vd_UMAP(object = so.query, vd_model.list = vd_model.list)
# step 5 (optional): visualize decomposition
res.var2 <- vd_results.list$varPart.format1
plt.var <- plotVarPart( res.var2 ) +
theme_miko() +
labs(title = "Variance Decomposition", subtitle = "Linear Mixed-Effects Model") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.