# Halotime model with logistic distribution of base salt concentration
# 9/1/2024
HaloTL.fun <- function(time, SConc, ThetaHalo, SConcb50, sigma){
plogis((SConc + (ThetaHalo/time) - SConcb50)/sigma, lower.tail = F) }
"HaloTL" <- function(){
fct <- function(x, parm){
HaloTL.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3]) }
names <- c("ThetaHalo", "SConcb50", "sigma")
text <- "Halotime model with logistic distribution of SConcb"
name <- "HaloTLL"
ss <- function(data){
x1 <- data[, 1]
x2 <- data[, 2]
y <- data[, 3]
pseudoY <- qnorm((y+10e-6)*0.99, lower.tail = F)
mod <- lm(pseudoY ~ I(1/x1) + x2)
sigma <- 1/coef(mod)[3]
SConcb50 <- -coef(mod)[1]*sigma
ThetaHalo <- coef(mod)[2]*sigma
return(c(ThetaHalo, SConcb50, sigma))
}
GR <- function(parms, respl, reference="control", type="relative", SConc){
HaloTL.gra <- function(ThetaHalo, SConcb50, sigma, SConc, g) {
GR <- (sigma * qlogis(g, lower.tail = F) - SConc + SConcb50 )/ ThetaHalo #returns rate
GR <- ifelse(GR > 0, GR, 0)
1/GR # returns time
}
ThetaHalo <- as.numeric(parms[1])
SConcb50 <- as.numeric(parms[2])
sigma <- as.numeric(parms[3])
# g <- respl/100 # bug corrected 9/1/25
g <- respl
if(type=="absolute"){
EDp <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, g)
#Approximation of derivatives(finite differences)
d1.1 <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, g)
d1.2 <- HaloTL.gra(ThetaHalo + 10e-6, SConcb50, sigma, SConc, g)
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, g)
d2.2 <- HaloTL.gra(ThetaHalo, SConcb50 + 10e-6, sigma, SConc, g)
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, g)
d3.2 <- HaloTL.gra(ThetaHalo, SConcb50, sigma + 10e-6, SConc, g)
d3 <- (d3.2 - d3.1)/10e-6
EDder <- c(d1, d2, d3)
} else{ if(type=="relative") {
.Pmax <- plogis((SConc - SConcb50 )/sigma, lower.tail = F)
grel <- .Pmax*g
EDp <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, grel)
#Approximation of derivatives(finite differences)
d1.1 <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, grel)
d1.2 <- HaloTL.gra(ThetaHalo + 10e-6, SConcb50, sigma, SConc, grel)
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, grel)
d2.2 <- HaloTL.gra(ThetaHalo, SConcb50 + 10e-6, sigma, SConc, grel)
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HaloTL.gra(ThetaHalo, SConcb50, sigma, SConc, grel)
d3.2 <- HaloTL.gra(ThetaHalo, SConcb50, sigma + 10e-6, SConc, grel)
d3 <- (d3.2 - d3.1)/10e-6
EDder <- c(d1, d2, d3)
} }
return(list(EDp, EDder))
}
deriv1 <- function(x, parm){
#Approximation by using finite differences
d1.1 <- HaloTL.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3])
d1.2 <- HaloTL.fun(x[,1], x[,2], (parm[,1] + 10e-6), parm[,2], parm[,3])
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HaloTL.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3])
d2.2 <- HaloTL.fun(x[,1], x[,2], parm[,1], (parm[,2] + 10e-6), parm[,3])
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HaloTL.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3])
d3.2 <- HaloTL.fun(x[,1], x[,2], parm[,1], parm[,2], (parm[,3] + 10e-6))
d3 <- (d3.2 - d3.1)/10e-6
cbind(d1, d2, d3)
}
returnList <- list(fct=fct, ssfct=ss, name = name, names=names, text=text, edfct=GR, deriv1=deriv1)
class(returnList) <- "drcMean"
invisible(returnList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.