"loglogistic" <- function(
fixed = c(NA, NA, NA), names = c("b", "d", "e"))
{
## Checking arguments
numParm <- 3
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if ( !(length(fixed) == numParm) ) {stop("Not correct 'fixed' argument")}
## Handling 'fixed' argument
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
## Defining the model function
fct <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
parmMat[, 2]/(1 + exp(- parmMat[, 1]*(log(dose + 0.000001) - log(parmMat[, 3]))))
}
## Defining the self starter function
ssfct <- function(data){
x <- data[, 1]
y <- data[, 2]
y <- y[x > 0]
x <- x[x > 0]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
# print(x); print(y)
d <- max(y) * 1.01
## Linear regression on pseudo y values
pseudoY <- log((d - y)/(y + 0.000001))
coefs <- coef( lm(pseudoY ~ log(x)))
b <- - coefs[2]
k <- coefs[1];
e <- exp(k/b)
value <- c(b, ifelse(d>=1, 0.999, d), e)
return(value[notFixed])
}
## Defining names
names <- names[notFixed]
##Defining the first derivatives (in the parameters)
deriv1 <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
fctb <- deriv(~d/(1 + exp(-b * (log(x + 0.000001) - log(e)))), "b",
function.arg = c("b", "d", "e", "x"))
fctd <- deriv(~d/(1 + exp(-b * (log(x + 0.000001) - log(e)))), "d",
function.arg = c("b", "d", "e", "x"))
fcte <- deriv(~d/(1 + exp(-b * (log(x + 0.000001) - log(e)))), "e",
function.arg = c("b", "d", "e", "x"))
derb <- as.numeric( attr(fctb(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
derd <- as.numeric( attr(fctd(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
dere <- as.numeric( attr(fcte(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
ret <- cbind(derb, derd, dere)[, notFixed]
# print(as.matrix(ret))
# cbind(derb, derd, dere)[, notFixed]
as.matrix(ret)
}
deriv2 <- NULL
##Defining the first derivative (in the dose)
derivx <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
retVec <- deriv(~d/(1 + exp(-b * (log(x + 0.000001) - log(d)))), "x",
function.arg = c("b", "d", "e", "x"))
retVec
}
## Defining the ED function
edfct <- function(parm, respl = 50, reference, type, ...)
{
respl <- respl
parmVec[notFixed] <- parm
if (type == "absolute")
{
tempVal <- log( (parmVec[2] - respl)/respl )
dVal <- 1
} else {
# respl <- respl * 100
tempVal <- log( (1 - respl)/respl )
dVal <- 0
}
EDp <- exp( - tempVal/parmVec[1] + log(parmVec[3]))
EDder1 <- - EDp * 1/(parmVec[1]^2) * tempVal
EDder2 <- dVal * (EDp * (- 1/parmVec[1] * (100/respl/((100 * parmVec[2] - respl)/respl))))
EDder3 <- EDp * 1/parmVec[3]
# D(expression(exp(- 1/b * log((100 - p)/p) + log(e))), "d")
# D(expression(exp(- 1/b * log((100*d - p)/p) + log(e))), "d")
EDder <- c(EDder1, EDder2, EDder3)
return(list(EDp, EDder[notFixed]))
}
## Defining the inverse function
invfct <- function(y, parm)
{
parmVec[notFixed] <- parm
exp(log((parmVec[2] - y)/(y))/parmVec[1] + log(parmVec[3]))
}
## Returning the function with self starter and names
returnList <-
list(fct = fct, ssfct = ssfct, names = names, deriv1 = deriv1, deriv2 = deriv2, derivx = derivx,
edfct = edfct, inversion = invfct,
name = "loglogistic",
text = "Log-logistic distribution of event times",
noParm = sum(is.na(fixed)),
fixed = fixed)
class(returnList) <- "drcMean"
invisible(returnList)
}
"loglogisticSurv" <- function(
fixed = c(NA, NA, NA), names = c("b", "d", "e"))
{
## Checking arguments
numParm <- 3
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if ( !(length(fixed) == numParm) ) {stop("Not correct 'fixed' argument")}
## Handling 'fixed' argument
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
## Defining the model function
fct <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
parmMat[, 2]/(1 + exp(- (log(dose + 0.000001) - parmMat[, 3])/exp(parmMat[, 1])))
}
## Defining the self starter function
ssfct <- function(data){
x <- data[, 1]
y <- data[, 2]
y <- y[x > 0]
x <- x[x > 0]
d <- max(y) * 1.01
## Linear regression on pseudo y values
pseudoY <- log((d - y)/(y + 0.000001))
# print(pseudoY)
coefs <- coef( lm(pseudoY ~ log(x)))
b <- - 1/coefs[2]
k <- coefs[1];
e <- k * b
value <- c(log(b), ifelse(d>=1, 0.999, d), e)
return(value[notFixed])
}
## Defining names
names <- names[notFixed]
##Defining the first derivatives (in the parameters)
deriv1 <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
meanFct <- ~d/(1 + exp(-(log(x) - e)/exp(b)))
fctb <- deriv(meanFct, "b",
function.arg = c("b", "d", "e", "x"))
fctd <- deriv(meanFct, "d",
function.arg = c("b", "d", "e", "x"))
fcte <- deriv(meanFct, "e",
function.arg = c("b", "d", "e", "x"))
# print(fctb(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose)); stop()
derb <- as.numeric( attr(fctb(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
derd <- as.numeric( attr(fctd(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
dere <- as.numeric( attr(fcte(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
cbind(derb, derd, dere)[, notFixed]
}
deriv2 <- NULL
##Defining the first derivative (in the dose)
derivx <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
meanFct <- ~ d/(1 + exp(-(log(x) - e)/exp(b)))
retVec <- deriv(meanFct, "x",
function.arg = c("b", "d", "e", "x"))
retVec
}
## Defining the ED function
edfct <- function(parm, respl, reference, type, ...)
{
parmVec[notFixed] <- parm
if (type == "absolute")
{
tempVal <- log( (100 * parmVec[2] - respl)/respl )
dVal <- 1
} else {
tempVal <- log( (100 - respl)/respl )
dVal <- 0
}
EDp <- exp(tempVal * exp(parmVec[1]) + parmVec[3])
EDder1 <- - EDp * exp(parmVec[1]) * tempVal
EDder2 <- dVal * (EDp * (exp(parmVec[1]) * (100/respl/((100 * parmVec[2] - respl)/respl))))
EDder3 <- EDp
# D(expression(exp(exp(b) * log((100 - p)/p) + e)), "e")
# D(expression(exp(exp(b) * log((100*d - p)/p) + e)), "e")
EDder <- c(EDder1, EDder2, EDder3)
return(list(EDp, EDder[notFixed]))
}
## Defining the inverse function
invfct <- function(y, parm)
{
parmVec[notFixed] <- parm
exp(log(((parmVec[3] - parmVec[2])/(y - parmVec[2])) - 1)/parmVec[1] + log(parmVec[3]))
}
## Returning the function with self starter and names
returnList <-
list(fct = fct, ssfct = ssfct, names = names, deriv1 = deriv1, deriv2 = deriv2, derivx = derivx,
edfct = edfct, inversion = invfct,
# name = fctName,
text = "Log-logistic distribution of germination times",
noParm = sum(is.na(fixed)),
fixed = fixed)
class(returnList) <- "drcMean"
invisible(returnList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.