#' Estimate parameters of a Beta distribution from counts
#'
#' This function estimates the two parameters of the Beta distribution, alpha
#' and beta for each cell type. The input is a matrix of cell type counts,
#' where the rows are the cell types/clusters and the columns are the samples.
#'
#' This function is called from the plotting function \code{plotCellTypeMeanVar}
#' in order to estimate the variance for the Beta-Binomial distribution for
#' each cell type.
#'
#' @param x a matrix of counts
#'
#' @return outputs a list object with the following components
#' \item{n }{Normalised library size}
#' \item{alpha }{a vector of alpha parameters for the Beta distribution for
#' each cell type}
#' \item{beta }{vector of beta parameters for the Beta distribution for
#' each cell type}
#' \item{pi }{Estimate of the true proportion for each cell type}
#' \item{dispersion }{Dispersion estimates for each cell type}
#' \item{var }{Variance estimates for each cell type}
#'
#' @export
#'
#' @author Belinda Phipson
#'
#' @examples
#' data <- speckle_example_data()
#' x <- table(data$clusters, data$samples)
#' estimateBetaParamsFromCounts(x)
#'
#'
estimateBetaParamsFromCounts <- function(x){
# Make sure input is a matrix
counts <- as.matrix(x)
# Normalise the counts so that the total number of counts per sample is equal
nc <- normCounts(counts)
# Get cell type means
m1 <- rowMeans(nc)
# Get variance estimate for each cell type
m2 <- rowSums(nc^2)/ncol(nc)
n <- mean(colSums(nc))
alpha <- (n*m1-m2)/(n*(m2/m1-m1-1)+m1)
beta <- ((n-m1)*(n-m2/m1))/(n*(m2/m1-m1-1)+m1)
disp <- 1/(alpha+beta)
pi <- alpha/(alpha+beta)
var <- n*pi*(1-pi)*(n*disp+1)/(1+disp)
output <- list(n=n, alpha=alpha, beta=beta, pi=pi, dispersion=disp, var=var)
output
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.