library(dplyr)
## Import STATLANT 21A landings data from https://www.nafo.int/Data/STATLANT-21A
## Note the landings data are in tonnes
landings <- read.csv("data-raw/landings/STATLANT21A_Extraction.csv")
names(landings) <- c("year", "country", "division", "species", "landings")
## Filter to focal area
landings <- landings %>%
filter(division %in% c("2J", "3K", "3L", "3N", "3O", "3P", "3PS")) %>%
mutate(region = case_when(
division %in% c("2J", "3K") ~ "2J3K",
division %in% c("3L", "3N", "3O") ~ "3LNO",
division %in% c("3P", "3PS") ~ "3Ps",
TRUE ~ "ERROR"
))
## Demersal fish species with all time reported landings of > 1000 tonnes
## Exception: Winter Flounder b/c inshore and not present in multispecies survey
totals <- landings %>%
group_by(species) %>%
summarise(n_years = length(unique(year)), total = sum(landings)) %>%
arrange(-total)
data.frame(totals)
keep_sp <- c("ATLANTIC COD - COD" = "Atlantic Cod",
"ATLANTIC REDFISHES (NS) - RED" = "Redfish spp.",
"AMERICAN PLAICE - PLA" = "American Plaice",
"GREENLAND HALIBUT - GHL" = "Greenland Halibut",
"YELLOWTAIL FLOUNDER - YEL" = "Yellowtail Flounder",
"WITCH FLOUNDER - WIT" = "Witch Flounder",
"SKATES (NS) - SKA" = "Skate spp.",
"ROUNDNOSE GRENADIER - RNG" = "Roundnose Grenadier",
"HADDOCK - HAD" = "Haddock",
"WHITE HAKE - HKW" = "White Hake",
"WOLFFISHES (CATFISH) (NS) - CAT" = "Wolffish spp.",
"ROUGHHEAD GRENADIER - RHG" = "Roughhead Grenadier",
"ATLANTIC HALIBUT - HAL" = "Atlantic Halibut",
"AMERICAN ANGLER - ANG" = "Monkfish",
"RED HAKE - HKR" = "Red Hake",
# "WINTER FLOUNDER - FLW" = "Winter Flounder",
"SILVER HAKE - HKS" = "Silver Hake",
"BEAKED REDFISH(DEEP-WATER) - REB" = "Redfish spp.",
"ATLANTIC WOLFFISH - CAA" = "Wolffish spp.",
"THORNY SKATE (STARRY RAY) - RJR" = "Skate spp.",
"GOLDEN REDFISH - REG" = "Redfish spp.",
"NORTHERN WOLFFISH - CAB" = "Wolffish spp.",
"SPOTTED WOLFFISH - CAS" = "Wolffish spp.")
## TODO: Consider options for dealing with general FINFISHES (NS), GROUNDFISHES (NS), FLATFISHES (NS) categories
## Subset to demersal fish species with cumulative catch of > 1000 tonnes
landings <- landings[landings$species %in% names(keep_sp), ]
landings$species <- keep_sp[as.character(landings$species)] # simplify names
## Sum by region and species
landings <- landings %>%
group_by(year, region, species) %>%
summarise(landings = sum(landings) / 1000) %>%
as.data.frame()
## Fill missing values with zero
grd <- expand.grid(year = unique(landings$year),
region = unique(landings$region),
species = unique(landings$species))
landings <- merge(landings, grd, by = c("year", "region", "species"), all = TRUE)
landings$landings[is.na(landings$landings)] <- 0
## Export
landings <- landings[, c("year", "region", "species", "landings")]
landings <- landings[order(landings$year, landings$region, landings$species), ]
names(landings) <- c("Year", "Region", "Species", "Landings (kt)")
write.csv(landings, file = "data-raw/landings.csv", row.names = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.