PCAPlot: Plot principle component analysis for gene expression data.

Description Usage Arguments Value Author(s) See Also Examples

Description

PCAPlot generates principle component plots for with the possibility to color arrays according to a known factor.

Usage

1
2
PCAPlot(Y, comp = c(1, 2), anno = NULL, Factor = NULL, numeric = FALSE,
  new.legend = NULL, title)

Arguments

Y

A matrix of gene expression values or an object of class prcomp.

comp

A vector of length 2 specifying which principle components to be used.

anno

A dataframe or a matrix containing the annotation of the arrays.

Factor

A character string describing the column name of anno used for coloring.

numeric

A logical scalar indicating whether Factor is numerical.

new.legend

A vector describing the names used for labelling; if NULL labels in Factor are used.

title

A character string giving the title.

Value

PCAPlot returns a plot.

Author(s)

Saskia Freytag

See Also

prcomp

Examples

1
2
3
4
5
6
7
8
Y<-simulateGEdata(500, 500, 10, 2, 5, g=NULL, Sigma.eps=0.1, 250, 100, check.input=FALSE)
PCAPlot(Y$Y, title="")

# Create random annotation file
anno<-as.matrix(sample(1:4, dim(Y$Y)[1], replace=TRUE))
colnames(anno)<-"Factor"
try(dev.off(), silent=TRUE)
PCAPlot(Y$Y, anno=anno, Factor="Factor", numeric=TRUE, title="")

PeteHaitch/RUVcorr documentation built on May 8, 2019, 1:31 a.m.