#' Export class predict_modSpecies
#'
#' @export
setClass('modSpecies_predict')
#' Predict for modSpecies
#' @title Generic predict function for \code{bru_SDM} objects.
#' @description Predict function for the object produced by \code{\link{fitISDM}}. Should act identically to \pkg{inlabru}'s generic predict function if wanted, but has additional arguments to help predict certain components created by the model. This is needed since \code{\link{startSpecies}} creates variable names which might not be directly apparent to the user.
#' @param object A \code{modSpecies} object.
#' @param data Data containing points of the map with which to predict on. May be \code{NULL} if one of \code{mesh} or \code{mask} is \code{NULL}.
#' @param formula Formula to predict. May be \code{NULL} if other arguments: \code{covariates}, \code{spatial}, \code{intercepts} are not \code{NULL}.
#' @param mesh An \code{fm_mesh_2d} object.
#' @param mask A mask of the study background. Defaults to \code{NULL}.
#' @param covariates Name of covariates to predict.
#' @param spatial Logical: include spatial effects in prediction. Defaults to \code{FALSE}.
#' @param intercepts Logical: include intercept terms in prediction. Defaults to \code{FALSE}.
#' @param datasets Names of the datasets to include intercept and spatial term.
#' @param species Names of the species to predict. Default of \code{NULL} results in all species being predicted.
#' @param bias Logical include bias field in prediction. Defaults to \code{FALSE}.
#' @param biasnames Names of the datasets to include bias term. Defaults to \code{NULL}. Note: the chosen dataset needs to be run with a bias field first; this can be done using \code{.$addBias} with the object produced by \code{\link{startSpecies}}.
#' @param predictor Should all terms (except the bias terms) included in the linear predictor be used in the predictions. Defaults to \code{FALSE}.
#' @param fun Function used to predict. Set to \code{'linear'} if effects on the linear scale are desired.
#' @param ... Additional arguments used by the inlabru \code{predict} function.
#'
#' @method predict modSpecies
#' @rdname predict
#' @return A list of inlabru predict objects.
#' @export
#'
#' @examples
#'
#' \dontrun{
#'
#' if (requireNamespace('INLA')) {
#'
#' #Get Data
#' data("SolitaryTinamou")
#' proj <- "+proj=longlat +ellps=WGS84"
#' data <- SolitaryTinamou$datasets
#' mesh <- SolitaryTinamou$mesh
#' mesh$crs <- proj
#'
#' #Set model up
#' organizedData <- startSpecies(data, Mesh = mesh, speciesName = 'speciesName',
#' Projection = proj, responsePA = 'Present')
#'
#' ##Run the model
#' modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy = 'eb',
#' diagonal = 1)))
#'
#' #Predict spatial field on linear scale
#' predictions <- predict(modelRun, mesh = mesh, spatial = TRUE, fun = 'linear')
#'
#' }
#'}
#'
predict.modSpecies <- function(object, data = NULL, formula = NULL, mesh = NULL,
mask = NULL, covariates = NULL, spatial = FALSE,
intercepts = FALSE, datasets = NULL, species,
bias = FALSE, biasnames = NULL, predictor = FALSE,
fun = 'linear', ...) {
if (is.null(data) & is.null(mesh)) stop("Either data covering the entire study region or an fm_mesh_2d object is required.")
if (sum(predictor, bias) > 1) stop('You cannot combine predictor with bias.')
#Why can't you do both here?
if (bias && spatial) stop('Please choose one of bias and spatial.')
if (is.null(datasets)) datasets <- unique(object$source)
if (!missing(species)) {
if (!all(species %in% unique(unlist(object[['species']][['speciesIn']])))) stop('Species provided not in model.')
species <- sort(species)
}
else species <- unique(unlist(object$species$speciesIn))
if(is.null(species)) speciespreds <- FALSE
else speciespreds <- TRUE
if (predictor) {
intercepts <- TRUE
covariates <- object$spatCovs$name
if (!is.null(object$covariateFormula)) covariates <- c(covariates, paste0(species,'_Fixed__Effects__Comps'))
if (!is.null(object$spatCovs$biasFormula)) covariates <- covariates[!covariates %in% labels(terms(object$spatCovs$biasFormula))]
if(is.character(object$spatial$points) | is.character(object$spatial$species)) spatial <- TRUE
else {
if (!object$spatial$points & !object$spatial$species) spatial <- FALSE
else spatial <- TRUE
}
}
if (intercepts) {
if (!is.null(datasets)) {
intercept_terms <- paste0(datasets, '_intercept')
if (identical(rownames(object$summary.fixed)[rownames(object$summary.fixed) %in% intercept_terms], character(0))) intercept_terms <- NULL
} else intercept_terms <- NULL
} else intercept_terms <- NULL
if (is.null(object$spatCovs$covariateFormula)) {
covsEst <- c(row.names(object$summary.fixed), names(object$summary.random)[names(object$summary.random) %in% c(object$spatCovs$name,
as.vector(outer(paste0(unlist(object[['species']][['speciesIn']]),'_'), object$spatCovs$name, FUN = 'paste0')))])
if (!all(covariates%in%covsEst) && !all(as.vector(outer(paste0(unlist(object[['species']][['speciesIn']]),'_'), covariates, FUN = 'paste0'))%in%covsEst)) stop("Covariates provided not in model.")
}
if (is.null(formula) && !intercepts && !spatial && is.null(covariates) && !bias && !predictor) stop("Please provide either a formula or components of a formula to be predicted.")
if (!is.null(object$temporal$temporalVar)) temporal <- TRUE
else temporal <- FALSE
if (is.null(data)) {
if (!is.null(mask)) {
data <- fmesher::fm_pixels(mesh, mask = mask)
}
else data <- fmesher::fm_int(mesh)
}
if (speciespreds) {
if (object[['species']][['speciesEffects']][['Intercepts']]) {
data <- fmesher::fm_cprod(data, data.frame(speciesIndexREMOVE = 1:length(unique(unlist(object$species$speciesIn)))))
names(data)[names(data) == 'speciesIndexREMOVE'] <- object[['species']][['speciesVar']]
}
if (object$spatial$species == 'replicate') {
if (!object[['species']][['speciesVar']] %in% names(data)) data <- fmesher::fm_cprod(data, data.frame(speciesSpatialGroup = 1:length(unique(unlist(object$species$speciesIn)))))
else data$speciesSpatialGroup <- data[[object[['species']][['speciesVar']]]]
}
if (!object$species$speciesEffects$Intercepts) {
data <- fmesher::fm_cprod(data, data.frame(temp_species_index_var = 1:length(unique(unlist(object$species$speciesIn)))))
names(data)[names(data) == 'temp_species_index_var'] <- object[['species']][['speciesVar']]
}
}
if (!any(names(data) %in% c(object$spatCovs$name, paste0(unique(unlist(object$species$speciesIn)), '_', object$spatCovs$name)))) {
for (spatCov in object$spatCovs$name) {
if (!is.null(object$spatCovs$biasFormula)) {
if (spatCov %in% labels(terms(object$spatCovs$biasFormula))) covIndex <- spatCov
else
if (object$species$speciesEffects$Environmental) covIndex <- paste0(unique(unlist(object$species$speciesIn)), '_', spatCov)
else covIndex <- spatCov
}
else
if (object$species$speciesEffects$Environmental) covIndex <- paste0(unique(unlist(object$species$speciesIn)), '_', spatCov)
else covIndex <- spatCov
data[, covIndex] <- inlabru::eval_spatial(where = data,
data = get('spatialcovariates',
envir = object$spatCov$env)[spatCov],
layer = spatCov)
if (any(is.na( data[, covIndex]))) {
for (indFix in covIndex) {
data[[indFix]] <- inlabru::bru_fill_missing(where = data,
data = get('spatialcovariates',
envir = object$spatCov$env)[spatCov],
layer = spatCov,
values = data[[indFix]])
}
}
}
}
if (is.null(formula)) {
int <- list()
class(object) <- c('bru','inla','iinla')
if (is.null(fun) | fun == 'linear') fun <- ''
if (temporal) {
##Is this needed?
numeric_time <- order(as.numeric(unique(unlist(object$temporal$temporalIn))))
time_variable <- object$temporal$temporalVar
time_data <- data.frame(seq_len(max(numeric_time)))
names(time_data) <- time_variable
data <- fmesher::fm_cprod(data, data.frame(time_data))
data$.__plot__index__ <- data[[time_variable]]
}
if (bias) {
if (!is.null(object$biasData$Fields)) {
if (is.null(biasnames)) biasnames <- object$biasData$Fields
biasnames <- paste0(biasnames,'_biasField')
} else biasnames <- NULL
#paste0 specieshere
if ('Bias__Effects__Comps' %in% names(object$summary.random)) biasnames <- c('Bias__Effects__Comps', biasnames)
else biasnames <- c(biasnames, NULL)
if (!all(biasnames %in% names(object$summary.random))) stop('Either no bias field has been used or an incorrect dataset name was given.')
if (temporal) {
formula <- as.formula(paste0('~ ',as.character(fun),'(',paste(biasnames,')')))
int[['temporalBiasFields']] <- predict(object, newdata = data, formula = formula, ...)
}
else {
for (bias in biasnames) {
formula <- as.formula(paste0('~ ',as.character(fun),'(',paste(bias,')')))
int[['biasFields']][[bias]] <- predict(object, newdata = data, formula = formula, ...)
}
}
class(int) <- c('modSpecies_predict', class(int))
return(int)
}
if (speciespreds) {
int[['speciesPredictions']] <- vector(mode = 'list', length(species))
names(int[['speciesPredictions']]) <- species
speciesEff <- vector(mode = 'list', length = length(species))
names(speciesEff) <- species
for (spec in species) {
if (!is.null(covariates)) {
species_covs <- NULL
if (paste0(spec, '_Fixed__Effects__Comps') %in% names(object$summary.random)) species_covs <- paste0(spec, '_Fixed__Effects__Comps')
if(is.null(species_covs)) {
if (object[['species']][['speciesEffects']][['Environmental']]) species_covs <- paste0(spec, '_', covariates)
else species_covs <- covariates
}
}
else species_covs <- NULL
if (intercepts) {
if (!object[['species']][['speciesEffects']][['Intercepts']]) {
intercepts_species <- paste0(spec,'_intercept')
} else if (object[['species']][['speciesEffects']][['Intercepts']]) {
intercepts_species <- paste0(object[['species']][['speciesVar']], '_intercepts')
} else intercepts_species <- NULL
}
else intercepts_species <- NULL
if (spatial) {
##Fix this
allSpat <- c(paste0(spec, '_spatial'),
paste0(spec, '_', names(object$dataType), '_spatial'),
'speciesShared')
species_spat <- allSpat[allSpat %in% names(object$summary.random)]
}
else species_spat <- NULL
species_formula <- formula(paste0('~', fun, '(', paste0(c(species_spat, species_covs, intercepts_species, intercept_terms), collapse = ' + '),')'))
speciesEff[spec] <- paste(spec, '=', fun, '(0 +',paste0(c(species_covs, species_spat, intercepts_species, intercept_terms), collapse = '+'), ')')
}
.__speciesFormulas.__ <- paste(do.call(paste0, list(speciesEff, sep = ';')), collapse = '')
.__speciesEval.__ <- paste('Predictions = list(', paste(species,'=',species, collapse = ' , '),')')
.__thin.__ <- paste0(paste(paste0(species, '[!1:length(',species,') %in% seq(', 1:length(species),',length(',species,'),', length(species), ')] <- FALSE'), collapse=';'),';')
predictionFormula <- paste('{',
.__speciesFormulas.__,
.__thin.__,
.__speciesEval.__ ,'}')
int <- predict(object, data, formula = parse(text = predictionFormula), ...)
int <- list(mapply(function(x, seq) {
pred <- x[x[[object$species$speciesVar]] == seq,]
if ('speciesSpatialGroup' %in% names(pred)) pred <- pred[pred[['speciesSpatialGroup']] == seq,]
list(pred)
}, int, seq = 1:length(int)))
names(int) <- 'speciesPredictions'
class(int) <- c('modSpecies_predict', class(int))
return(int)
}
if (spatial) {
if (object$spatial$points == 'correlate') {
if (any(object$dataType == "Present absence")) data$._dataset_index_var_. <- which(object$dataType == "Present absence")[1]
else data$._dataset_index_var_. <- 1
}
if ('shared_spatial' %in% names(object$summary.random)) spatial_obj <- 'shared_spatial'
else
if (object$spatial$points == 'copy') spatial_obj <- paste0(object$source[1], '_spatial')
else
if (!all(paste0(datasets,'_spatial') %in% names(object$summary.random))) stop('Spatial effects not provided in startSpecies.')
else spatial_obj <- paste0(datasets, '_spatial')
}
else spatial_obj <- NULL
if (predictor) formula_components <- c(row.names(object$summary.fixed), names(object$summary.random)[!names(object$summary.random) %in% paste0(object[['source']], '_biasField')])
else formula_components <- c(covariates, intercept_terms, spatial_obj)
if (!is.null(object$spatCovs$biasFormula)) formula_components <- formula_components[!formula_components %in% c('Bias__Effects__Comps', paste0(unique(object$species$speciesIn),'_Bias__Effects__Comp'))]
if (all(is.null(formula_components))) stop('Please specify at least one of: covariates, spatial, intercepts or bias.')
formula <- as.formula(paste0('~ ',as.character(fun),'(',paste(formula_components, collapse = ' + '),')'))
#int[[i]] <- predict(object, data = data, formula = formula, ...)
int <- predict(object, newdata = data, formula = formula, ...)
int <- list(int)
names(int) <- 'predictions'
class(int) <- c('modSpecies_predict', class(int))
return(int)
}
else {
##Fix this?
class(object) <- c('bru','inla','iinla')
int <- predict(object, newdata = data, formula = formula, ...)
if (any(c('speciesSpatialGroup', object[['species']][['speciesVar']]) %in% names(int))) {
int[['..speciesPlotVar..']] <- NA
which <- names(int)[names(int) %in% c('speciesSpatialGroup', object[['species']][['speciesVar']])][1]
for (spec in species) {
spInd <- object$species$speciesTable[object$species$speciesTable$species == spec,]$index
try(int[int[[which]] == spInd,][[which]] <- spec, silent = TRUE)
try(int[int[[which]] == spec,][['..speciesPlotVar..']] <- spec, silent = TRUE)
}
}
int <- list(int)
names(int) <- 'predictionsFormula'
class(int) <- c('modSpecies_predict', class(int))
return(int)
}
}
#' Plot for modSpecies_predict
#' @title Generic plot function for \code{modSpecies_predict}.
#' @param x A modSpecies_predict object.
#' @param variable One of the following statistics to plot: "mean", "sd", "q0.025", "median","q0.975", "smin", "smax", "cv", "var"
#' @param plot Should the plots be printed, defaults to \code{TRUE}. If \code{FALSE} will produce a list of ggplot objects.
#' @param ... Argument not used
#' @return A ggplot2 object.
#'
#' @method plot modSpecies_predict
#' @rdname plot
#'
#' @exportS3Method
#'
#' @examples
#' \dontrun{
#'
#' if (requireNamespace('INLA')) {
#'
#' #Get Data
#' data("SolitaryTinamou")
#' proj <- "+proj=longlat +ellps=WGS84"
#' data <- SolitaryTinamou$datasets
#' mesh <- SolitaryTinamou$mesh
#' mesh$crs <- proj
#'
#' #Set model up
#' organizedData <- startSpecies(data, Mesh = mesh, Coordinates = c('X', 'Y'),
#' Projection = proj, responsePA = 'Present')
#'
#' ##Run the model
#' modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy = 'eb')))
#'
#' #Predict spatial field on linear scale
#' predictions <- predict(modelRun, mesh = mesh, spatial = TRUE, fun = 'linear')
#'
#' #Make generic plot of predictions
#' plot(predictions, colourHigh = 'red', colourLow = 'orange')
#'
#' }
#'}
#'
plot.modSpecies_predict <- function(x,
variable = 'mean',
plot = TRUE,
...) {
if (any(!variable%in%c("mean", "sd", "q0.025", "median","q0.975",
"smin", "smax", "cv", "var" ))) stop('variable is not a valid variable to plot')
if (length(x) == 1 && '.__plot__index__' %in% names(x[[1]])) {
if (length(variable) > 1) stop('Please only plot one variable at a time for species plots.')
##Need to create a new var called ..temporal_variable_index.. which is the tempVar
#temporalName <- names(x[[1]])[!names(x[[1]]) %in% c(".block", 'geometry', 'weight', 'mean', 'sd', 'q0.025', 'median', 'q0.975', 'q0.5', 'smin', 'smax', 'cv','mean.mc_std_err', 'sd.mc_std_err')]
temporalName <- '.__plot__index__'
x[[1]]$..temporal_variable_index.. <- as.character(data.frame(x[[1]])[, temporalName])
if (inherits(x[[1]], 'sf')) plot_obj <- geom_sf(data = x[[1]], aes(col = .data[[variable]]))
else plot_obj <- inlabru::gg(x[[1]], aes(col = .data[[variable]]))
plot_grid <- ggplot() + plot_obj + facet_wrap(~ ..temporal_variable_index..) + ggtitle('Plot of the temporal predictions')
return(plot_grid)
}
if (!plot) {
all_plots <- list()
prediction_list <- list()
}
if (names(x)[1] == 'biasFields') {
biasPlot <- TRUE
namesBias <- names(x[[1]])
x <- unlist(x, recursive = FALSE, use.names = FALSE)
names(x) <- namesBias
} else biasPlot <- FALSE
if (names(x)[] == 'speciesPredictions') {
speciesPlot <- TRUE
namesSpecies <- names(x[[1]])
x <- unlist(x, recursive = FALSE, use.names = FALSE)
names(x) <- namesSpecies
} else speciesPlot <- FALSE
##If plots for the individual fields??
datasettoplot <- names(x)
plot_list <- list()
for (plotname in datasettoplot) {
for (stat in variable) {
if (biasPlot) title <- ggtitle(paste('Predictions of', stat, 'for', plotname, 'bias field'))
else
if (speciesPlot) title <- ggtitle(paste('Predictions of', stat, 'for', plotname))
else title <- ggtitle(paste('Predictions of', stat, 'for', plotname))
prediction <- inlabru::gg(x[[plotname]], aes(col = .data[[stat]]))
if (!plot) prediction_list[[plotname]][[stat]] <- ggplot() + prediction + title
plot_list[[plotname]][[stat]] <- ggplot() + prediction + title
}
}
if (plot) {
rows <- length(variable)
cols <- length(datasettoplot)
ind <- max(rows, cols)
plot_list <- unlist(plot_list, recursive = FALSE)
plot_grid <- inlabru::multiplot(plotlist = plot_list, cols = ind)
}
else{
all_plots[[plotname]] <- prediction_list
return(all_plots)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.