#----------------------------------------------------------------------------------------------------
#' Class RidgeSolver
#'
#' @include Solver.R
#' @import glmnet
#' @import methods
#'
#' @name RidgeSolver-class
#' @rdname RidgeSolver-class
.RidgeSolver <- setClass("RidgeSolver",
contains="Solver",
slots = c(regulatorWeights = "numeric",
alpha = "numeric",
lambda = "numeric",
keep.metrics = "logical")
)
#----------------------------------------------------------------------------------------------------
#' Create a Solver class object using the Ridge solver
#'
#' @param mtx.assay An assay matrix of gene expression data
#' @param targetGene A designated target gene that should be part of the mtx.assay data
#' @param candidateRegulators The designated set of transcription factors that could be associated
#' with the target gene
#' @param regulatorWeights A set of weights on the transcription factors
#' (default = rep(1, length(tfs)))
#' @param alpha A parameter from 0-1 that determines the proportion of LASSO to ridge used in the
#' elastic net solver, with 0 being fully ridge and 1 being fully LASSO (default = 0.9)
#' @param lambda A tuning parameter that determines the severity of the penalty function imposed
#' on the elastic net regression. If unspecified, lambda will be determined via
#' permutation testing (default = numeric(0)).
#' @param keep.metrics A logical denoting whether or not to keep the initial supplied metrics
#' versus determining new ones
#' @param quiet A logical denoting whether or not the solver should print output
#'
#' @return A Solver class object with Ridge as the solver
#'
#' @seealso \code{\link{solve.Ridge}}, \code{\link{getAssayData}}
#'
#' @family Solver class objects
#'
#' @export
#'
#' @examples
#' \dontrun{
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' ridge.solver <- RidgeSolver(mtx.sub, target.gene, tfs)
#' }
RidgeSolver <- function(mtx.assay=matrix(), targetGene, candidateRegulators,
regulatorWeights = rep(1, length(candidateRegulators)),
alpha = 0, lambda = numeric(0),
keep.metrics = FALSE, quiet=TRUE)
{
if(any(grepl(targetGene, candidateRegulators)))
candidateRegulators <- candidateRegulators[-grep(targetGene, candidateRegulators)]
candidateRegulators <- intersect(candidateRegulators, rownames(mtx.assay))
stopifnot(length(candidateRegulators) > 0)
obj <- .RidgeSolver(Solver(mtx.assay=mtx.assay,
quiet=quiet,
targetGene=targetGene,
candidateRegulators=candidateRegulators),
regulatorWeights=regulatorWeights,
alpha = alpha,
lambda = lambda,
keep.metrics = keep.metrics
)
obj
} # RidgeSolver, the constructor
#----------------------------------------------------------------------------------------------------
#' Show the Ridge Solver
#'
#' @rdname show.RidgeSolver
#' @aliases show.RidgeSolver
#'
#' @param object An object of the class RidgeSolver
#'
#' @return A truncated view of the supplied object
#'
#' @examples
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' ridge.solver <- RidgeSolver(mtx.sub, target.gene, tfs)
#' show(ridge.solver)
setMethod('show', 'RidgeSolver',
function(object) {
regulator.count <- length(getRegulators(object))
if(regulator.count > 10){
regulatorString <- paste(getRegulators(object)[1:10], collapse=",")
regulatorString <- sprintf("%s...", regulatorString);
}
else
regulatorString <- paste(getRegulators(object), collapse=",")
msg = sprintf("RidgeSolver with mtx.assay (%d, %d), targetGene %s, %d candidate regulators %s, alpha = %f",
nrow(getAssayData(object)), ncol(getAssayData(object)),
getTarget(object), regulator.count, regulatorString, object@alpha)
cat (msg, '\n', sep='')
})
#----------------------------------------------------------------------------------------------------
#' Run the Ridge Regression Solver
#'
#' @rdname solve.Ridge
#' @aliases run.RidgeSolver solve.Ridge
#'
#' @description Given a TReNA object with Ridge Regression as the solver,
#' use the \code{\link{glmnet}} function to estimate coefficients
#' for each transcription factor as a predictor of the target gene's expression level.
#'
#' @param obj An object of class RidgeSolver
#'
#' @return A data frame containing the coefficients relating the target gene to each
#' transcription factor, plus other fit parameters.
#'
#' @seealso \code{\link{glmnet}}, , \code{\link{RidgeSolver}}
#'
#' @family solver methods
#'
#' @examples
#' # Load included Alzheimer's data, create a TReNA object with Bayes Spike as solver, and solve
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' ridge.solver <- RidgeSolver(mtx.sub, target.gene, tfs)
#' tbl <- run(ridge.solver)
setMethod("run", "RidgeSolver",
function (obj){
mtx <- getAssayData(obj)
target.gene <- getTarget(obj)
tfs <- getRegulators(obj)
mtx.beta <- elasticNetSolver(obj, target.gene, tfs,
obj@regulatorWeights,
obj@alpha,
obj@lambda,
obj@keep.metrics)
return(mtx.beta)
})
#----------------------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.