knitr::opts_chunk$set(echo = TRUE)

Introduction

Welcome to the ORFik package. ORFik is an R package for analysis of transcript and translation features through manipulation of sequence data and NGS data.

This vignette will preview a simple Ribo-seq pipeline using ORFik. It is important you read all the other vignettes before this one, since functions will not be explained here in detail.

Pipeline

This pipeline will shows steps needed to analyse Ribo-seq from:

The following steps are done:

  1. Define directory paths
  2. Download Ribo-seq & RNA-seq data from SRA (subset to 2 million reads per library)
  3. Download genome annotation and contaminants
  4. Trim & Align data
  5. Make ORFik experiment
  6. QC
  7. Heatmaps
  8. Count table analysis: TE tables
  9. Differentially translated genes
  10. Peak analysis
  11. Feature table
  12. Gene plotting (Advanced)
  13. uORF analysis (Advanced)

```r

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Ribo-seq HEK293 (2020) Investigative analysis of quality of new Ribo-seq data

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Article: https://f1000research.com/articles/9-174/v2#ref-5

Design: Wild type (WT) vs codon optimized (CO) (gene F9)

library(ORFik)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Config

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Specify paths wanted for NGS data, genome, annotation and STAR index

If you use local files, make a conf variable with existing directories

Seperate Ribo-seq and RNA-seq into separate folders with type argument

conf <- config.exper(experiment = "Tsvetkov_Yeast", assembly = "Yeast_SacCer3", type = c("Ribo-seq", "RNA-seq"))

Will create default config paths, if you want more control of where the

data is stored, check out function config() function

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Download fastq files for experiment and rename (Skip if you have the files already)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

SRA Meta data download (work for ERA, DRA and GEO too)

study <- download.SRA.metadata("PRJNA644594", auto.detect = TRUE)

Auto detection worked, all Ribo-seq and RNA-seq samples detected

NOTE: Could not detect condition CO, only wild type (WT)

Split study into (Ribo-seq / RNA-seq)

study.rfp <- study[LIBRARYTYPE == "RFP",] study.rna <- study[LIBRARYTYPE == "RNA",]

Download fastq files (uses SRR numbers (RUN column) from study))

The sample_title column had good names to rename files:

download.SRA(study.rfp, conf["fastq Ribo-seq"], rename = study.rfp$sample_title, subset = 2000000) download.SRA(study.rna, conf["fastq RNA-seq"], rename = study.rna$sample_title, subset = 2000000)

Which organism is this, scientific name, like "Homo sapiens" or "Danio rerio"

organism <- study$ScientificName[1] # Usually you find organism here, else set it yourself

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Annotation (Download genome, transcript annotation and contaminants)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

annotation <- getGenomeAndAnnotation( organism = organism, genome = TRUE, GTF = TRUE, phix = TRUE, ncRNA = TRUE, tRNA = TRUE, rRNA = TRUE, output.dir = conf["ref"], optimize = TRUE, gene_symbols = TRUE, pseudo_5UTRS_if_needed = 100 # If species have not 5' UTR (leader) definitions, make 100nt pseudo leaders. )

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

STAR index (index the genome and contaminants seperatly)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Remove max.ram = 20 and SAsparse = 2, if you have more than 64GB ram

index <- STAR.index(annotation, max.ram = 20, SAsparse = 2)

Show all annotations you have made with ORFik so far, validate your genome has gtf, genome and STAR index flags as TRUE.

list.genomes()

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Alignment (with depletion of phix, rRNA, ncRNA and tRNAs) & (with MultiQC of final STAR alignment)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

paired.end.rfp <- study.rfp$LibraryLayout == "PAIRED" paired.end.rna <- study.rna$LibraryLayout == "PAIRED"

STAR.align.folder(conf["fastq Ribo-seq"], conf["bam Ribo-seq"], index, paired.end = paired.end.rfp, steps = "tr-ge", # (trim needed: adapters found, then genome) adapter.sequence = "TCGTATGCCGTC", # Adapters are not auto detected by fastp trim.front = 0, min.length = 20)

STAR.align.folder(conf["fastq RNA-seq"], conf["bam RNA-seq"], index, paired.end = paired.end.rna, steps = "tr-ge", # (trim needed: adapters found, then genome) adapter.sequence = "TCGTATGCCGTC", # Adapters are not auto detected by fastp trim.front = 0, min.length = 20)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Create experiment (Starting point if alignment is finished)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

We now collect all the information into 1 object per library type

library(ORFik) create.experiment(file.path(conf["bam Ribo-seq"], "aligned/"), exper = conf["exp Ribo-seq"], fa = annotation["genome"], txdb = paste0(annotation["gtf"], ".db"), organism = organism, pairedEndBam = paired.end.rfp, rep = study.rfp$REPLICATE, condition = study.rfp$CONDITION, runIDs = study.rfp$Run)

create.experiment(file.path(conf["bam RNA-seq"], "aligned/"), exper = conf["exp RNA-seq"], fa = annotation["genome"], txdb = paste0(annotation["gtf"], ".db"), organism = organism, pairedEndBam = paired.end.rna, rep = study.rna$REPLICATE, condition = study.rna$CONDITION, runIDs = study.rna$Run)

library(ORFik)

Show the experiments you have made with ORFik so far

list.experiments(validate = FALSE) df.rfp <- read.experiment("Tsvetkov_Yeast_Ribo-seq") df.rna <- read.experiment("Tsvetkov_Yeast_RNA-seq")

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Convert files and run Annotation vs alignment QC

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

General QC

ORFikQC(df.rfp) ORFikQC(df.rna)

After ribo-seq QC is done, check that reads are centering on ~28nt if normal riboseq,

and hopefully > 20% of alignments overlaps mrna.

PCA for Ribo-seq vs RNA-seq

fpkm_table <- cbind(countTable(df.rfp, type = "fpkm"), countTable(df.rna, type = "fpkm")) pcaPlot(fpkm_table) # The samples seperate well between library types

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

P-shifting of Ribo-seq reads:

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

From ORFikQC it looks like 20, 21, 27:30 are candidates for Ribosomal footprints

shiftFootprintsByExperiment(df.rfp, accepted.lengths = c(20:21, 27:30))

Now check if you are happy with shifts, these libraries have some interesting

periodicity for read length 20 and 27,

it has identical amount of reads in frame 0 and 1, not optimal for ORF detection.

shiftPlots(df.rfp, output = "auto", downstream = 30) # Barplots, better details shiftPlots(df.rfp, output = "auto", downstream = 30, type = "heatmap") # Heatmaps, better overview

Ribo-seq specific QC

remove.experiments(df.rfp) # Remove loaded data (it is not pshifted) RiboQC.plot(df.rfp, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE))

A high rRNA concentration, using rRNA depletion protocols before sequencing could have fixed this

remove.experiments(df.rfp)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Create heatmaps (Ribo-seq)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Pre-pshifting

heatMapRegion(df.rfp, region = c("TIS"), shifting = "5prime", type = "ofst", outdir = file.path(QCfolder(df.rfp), "heatmaps/pre-pshift/")) remove.experiments(df.rfp)

After pshifting

heatMapRegion(df.rfp, region = c("TIS"), shifting = "5prime", type = "pshifted", outdir = file.path(QCfolder(df.rfp), "heatmaps/pshifted/"))

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Count table analysis: TE tables

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Shifting looks good, let's make count tables of pshifted libraries:

As a note: Correlation between count tables of pshifted vs raw libs is ~ 40% usually.

countTable_regions(df.rfp, lib.type = "pshifted", rel.dir = "pshifted")

TE per library match

countsRFP <- countTable(df.rfp, region = "cds", type = "fpkm", collapse = FALSE, count.folder = "pshifted") countsRNA <- countTable(df.rna, region = "mrna", type = "fpkm", collapse = FALSE) countsTE <- (countsRFP + 1) / (countsRNA + 1) # with pseudo count summary(countsTE) # Good stability of TE, no strong ribosome abundance regulation

TE per condition (WT vs CO) (collapse replicates)

countsRFP <- countTable(df.rfp, region = "cds", type = "fpkm", collapse = TRUE, count.folder = "pshifted") countsRNA <- countTable(df.rna, region = "mrna", type = "fpkm", collapse = TRUE) countsTE <- (countsRFP + 1) / (countsRNA + 1) # with pseudo count summary(countsTE) # Quite similar abundance over groups

TE merged all libraries

countsRFP <- countTable(df.rfp, region = "cds", type = "fpkm", collapse = "all", count.folder = "pshifted")[[1]] countsRNA <- countTable(df.rna, region = "mrna", type = "fpkm", collapse = "all")[[1]] countsTE <- (countsRFP + 1) / (countsRNA + 1) # with pseudo count summary(countsTE[countsRFP > 10 & countsRNA > 10]) # Gene with biggest normalized ratio is 8 ribosomes per mrna fragment

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Differential translation analysis (condition: WT vs CO)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

The design is by default chosen by this factor: The condition column in this case

design(df.rfp, multi.factor = FALSE)

We now run, and here get 210 unique DTEG genes

res <- DTEG.analysis(df.rfp, df.rna)

Now let's check if the Heat shock group overexpress the HSP90 Gene (formal name: HSC82):

symbols <- symbols(df.rfp) # Let's fetch the gene symbols table we made earlier HSP90_tx_id <- symbols[grep("HSC82", external_gene_name, ignore.case = T)]$ensembl_tx_name res[id == HSP90_tx_id]

It does, good good (Not for subset, not enough coverage there, only if you downloaded full libraries).

How is it regulated ?

res[id == HSP90_tx_id]$Regulation # By mRNA abundance (No change in subset) significant_genes <- res[Regulation != "No change",]

If you downloaded the full libraries, do this to use pshifted libraries instead.

Not a valid result for pshifted libraries using subset

res <- DTEG.analysis(df.rfp, df.rna, design = "condition", RFP_counts = countTable(df.rfp, region = "cds", type = "summarized", count.folder = "pshifted"))

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Peak detection (strong peaks in CDS)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

peaks <- findPeaksPerGene(loadRegion(df.rfp, "cds"), reads = RFP_WT_r1, type = "max")

Where along the coding sequences are the strongest peaks ?

ORFik::windowCoveragePlot(peaks, type = "cds", scoring = "transcriptNormalized")

The gene does not have a strong max peak in WT rep1

"YMR186W_mRNA" %in% peaks$gene_id # FALSE

peaks_HSR <- findPeaksPerGene(loadRegion(df.rfp, "cds"), reads = RFP_HSR_r1, type = "max")

The gene does not have a strong max peak in CO rep1 either

"YMR186W_mRNA" %in% peaks$gene_id # FALSE

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Codon analysis (From WT rep 1 & HSR rep 1)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

codon_table <- codon_usage_exp(df.rfp[df.rfp$rep == 1,], outputLibs(df.rfp[df.rfp$rep == 1,], type = "pshifted", output.mode = "list"), cds = loadRegion(df.rfp, "cds", filterTranscripts(df.rfp, minThreeUTR = NULL))) codon_usage_plot(codon_table) # There is an increased dwell time on (R:CGC) of A-sites in both conditions codon_usage_plot(codon_table, ignore_start_stop_codons = TRUE)

There is an increased dwell time on (R:CGG) of A-sites of HSP condition, why ?

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Feature table (From HSR rep 3)

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

cds <- loadRegion(df.rfp, "cds") cds <- ORFik:::removeMetaCols(cds) # Dont need them cds <- cds[filterTranscripts(df.rfp, minThreeUTR = NULL)] # Filter to sane transcripts (annotation is not perfect) dt <- computeFeatures(cds, RFP = fimport(filepath(df.rfp[6,], "pshifted")), RNA = fimport(filepath(df.rna[6,], "ofst")), Gtf = df.rfp, grl.is.sorted = TRUE, faFile = df.rfp, weight.RFP = "score", weight.RNA = "score", riboStart = 21, uorfFeatures = FALSE)

The features of significant DTEGs.

dt[names(cds) %in% significant_genes$id,]

All genes with strong 3nt periodicity of Ribo-seq

dt[ORFScores > 5,]

Not all genes start with ATG, possible errors in annotation

table(dt$StartCodons) # 5 Genes with ATA start codons ?

All genes with strong start codon peak

dt[startCodonCoverage > 5,]

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

Gene plotting (advanced under development!)

(Using package that extends ORFik for interactive html plots (RiboCrypt))

Will create interactive plot for Ribo-seq and RNA-seq sample: Wild type rep 3

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

This package also available on Bioconductor since Bioc version 3.14

BiocManager::install("RiboCrypt")

devtools::install_github("m-swirski/RiboCrypt", dependencies = TRUE) # Restart R if you already had RiboCrypt installed library(RiboCrypt) cds <- loadRegion(df.rfp, "cds") mrna <- loadRegion(df.rfp, "mrna") RiboCrypt::multiOmicsPlot_list(mrna[HSP90_tx_id], cds[HSP90_tx_id], reference_sequence = findFa(df.rfp@fafile), reads = list(fimport(filepath(df.rna[6,], "ofst")), fimport(filepath(df.rfp[6,], "pshifted"))), ylabels = c("RNA", "RFP"), withFrames = c(F, T), frames_type = "columns")

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

All ORF type predictions

Prediction using peridicity (Similar to RiboCode, ORFScore, minimum coverage, and comparison

to upstream and downstream window)

Will create 3 files in format (.rds), GRangesList of candidate ORFs, of predicted ORFs and a table

of all scores per ORF used for prediction

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

prediction_output_folder <- file.path(libFolder(df.rfp), "predicted_orfs") tx_subset <- symbols[grep("^HSP|^HSC", external_gene_name)]$ensembl_tx_name # Predict on all HSP/HSC genes

Run on 2 first libraries

ORFik::detect_ribo_orfs(df.rfp[1:2,], prediction_output_folder, c("uORF", "uoORF", "annotated", "NTE", "NTT", "doORF", "dORF"), startCodon = "ATG|CTG|TTG|GTG", mrna = loadRegion(df.rfp, "mrna", tx_subset), cds = loadRegion(df.rfp, "cds", tx_subset)) # Human also has a lot of ACG uORFs btw table <- riboORFs(df.rfp[1:2,], type = "table", prediction_output_folder)

Remember we are only predicting on 2 million reads, so we wont find that much

print(table(table[predicted == TRUE,]$type)) # 16 N-terminal extension of CDS predicted. table[ensembl_tx_name == HSP90_tx_id & predicted == TRUE,]

I highly advice to check results with results of the python predictor RiboCode,

it is by far the best alternative to ORFik prediction out there (I have tested:

RiboTaper (deprecated), ORFquant (very bad), RiboTricer (very bad), RiboNT (OK), RiboCode (very good!))

I will link to my optimized github fork of RiboCode which supports input of ORFik covRle objects later

(100x speedup compared to bam input, by using directly an internal hdf5 file!)



Roleren/ORFik documentation built on April 12, 2025, 5:31 a.m.