View source: R/Dif_expression_helpers.R
DEG_model | R Documentation |
This is the preparation step of DESeq2 analysis using ORFik::DEG.analysis. It is exported so that you can do this step in standalone, usually you want to use DEG.analysis directly.
DEG_model(
df,
target.contrast = design[1],
design = ORFik::design(df),
p.value = 0.05,
counts = countTable(df, "mrna", type = "summarized"),
batch.effect = TRUE
)
df |
an |
target.contrast |
a character vector, default |
design |
a character vector, default |
p.value |
a numeric, default 0.05 in interval (0,1). Defines adjusted p-value to be used as significance threshold for the result groups. I.e. for exclusive translation group significant subset for p.value = 0.05 means: TE$padj < 0.05 & Ribo$padj < 0.05 & RNA$padj > 0.05. |
counts |
a SummarizedExperiment, default: countTable(df, "mrna", type = "summarized"), all transcripts. Assign a subset if you don't want to analyze all genes. It is recommended to not subset, to give DESeq2 data for variance analysis. |
batch.effect |
logical, default TRUE. Makes replicate column of the experiment
part of the design. |
a DESeqDataSet object with results stored as metadata columns.
Other DifferentialExpression:
DEG.plot.static()
,
DTEG.analysis()
,
DTEG.plot()
,
te.table()
,
te_rna.plot()
## Simple example (use ORFik template, then use only RNA-seq)
df <- ORFik.template.experiment()
df.rna <- df[df$libtype == "RNA",]
design(df.rna) # The full experimental design
target.contrast <- design(df.rna)[1] # Default target contrast
#ddsMat_rna <- DEG_model(df.rna, target.contrast)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.