pcaExperiment: Simple PCA analysis

pcaExperimentR Documentation

Simple PCA analysis

Description

Detect outlier libraries with PCA analysis. Will output PCA plot of PCA component 1 (x-axis) vs PCA component 2 (y-axis) for each library (colored by library), shape by replicate. Will be extended to allow batch correction in the future.

Usage

pcaExperiment(
  df,
  output.dir = NULL,
  table = countTable(df, "cds", type = "fpkm"),
  title = "PCA analysis by CDS fpkm",
  subtitle = paste("Numer of genes/regions:", nrow(table)),
  plot.ext = ".pdf",
  return.data = FALSE,
  color.by.group = TRUE
)

Arguments

df

an ORFik experiment

output.dir

default NULL, else character path to directory. File saved as "PCAplot_(experiment name)(plot.ext)"

table

data.table, default countTable(df, "cds", type = "fpkm"), a data.table of counts per column (default normalized fpkm values).

title

character, default "CDS fpkm".

subtitle

character, default: paste("Numer of genes:", nrow(table))

plot.ext

character, default: ".pdf". Alternatives: ".png" or ".jpg". Note that in pdf format the complex correlation plots become very slow to load!

return.data

logical, default FALSE. Return data instead of plot

color.by.group

logical, default TRUE. Colors in PCA plot represent unique library groups, if FALSE. Color each sample in seperate color (harder to distinguish for > 10 samples)

Value

ggplot or invisible(NULL) if output.dir is defined or < 3 samples. Returns data.table with PCA analysis if return.data is TRUE.

Examples

df <- ORFik.template.experiment()
# Select only Ribo-seq and RNA-seq
pcaExperiment(df[df$libtype %in% c("RNA", "RFP"),])

Roleren/ORFik documentation built on Dec. 18, 2024, 11:39 p.m.