#' Coefficient Plots for MCMC Output
#'
#' Coefficient plots for MCMC output using \code{ggplot2}
#'
#' @param mod Bayesian model object generated by R2jags, rjags, R2WinBUGS, R2OpenBUGS,
#' MCMCpack, rstan, rstanarm, and brms.
#' @param pars a scalar or vector of the parameters you wish to include in the table.
#' By default, \code{mcmcCoefPlot} includes all parameters saved in a model object. If a
#' model has lots of samples and lots of saved parameters, not explicitly specifying
#' a limited number of parameters to include via \code{pars} may take a long time
#' or produce an unreadable plot. \code{pars} can either be a vector with the
#' specific parameters to be included in the table e.g. \code{pars = c("beta[1]",
#' "beta[2]", "beta[3]")}, or they can be partial names that will be matched using
#' regular expressions e.g. \code{pars = "beta"} if \code{regex = TRUE}. Both of
#' these will include \code{beta[1]}, \code{beta[2]}, and \code{beta[3]} in the
#' plot. If \code{pars} is left blank, \code{mcmcCoefPlot} will exclude auxiliary
#' parameters such as \code{deviance} from JAGS or \code{lp__} from Stan.
#' @param pointest a character indicating whether to use the mean or median for
#' point estimates in the table.
#' @param ci a scalar indicating the confidence level of the uncertainty intervals.
#' @param hpdi a logical indicating whether to use highest posterior density intervals
#' or equal tailed credible intervals to capture uncertainty; default \code{FALSE}.
#' @param sort logical indicating whether to sort the point estimates to produce
#' a caterpillar or dot plot; default \code{FALSE}.
#' @param plot logical indicating whether to return a \code{ggplot} object or the
#' underlying tidy DataFrame; default \code{TRUE}.
#' @param regex use regular expression matching with \code{pars}?
#'
#' @return a \code{ggplot} object or a tidy DataFrame.
#'
#' @author Rob Williams, \email{jayrobwilliams@gmail.com}
#'
#' @examples
#' \dontshow{.old_wd <- setwd(tempdir())}
#' \donttest{
#' if (interactive()) {
#' ## simulating data
#' set.seed(123456)
#' b0 <- 0.2 # true value for the intercept
#' b1 <- 0.5 # true value for first beta
#' b2 <- 0.7 # true value for second beta
#' n <- 500 # sample size
#' X1 <- runif(n, -1, 1)
#' X2 <- runif(n, -1, 1)
#' Z <- b0 + b1 * X1 + b2 * X2
#' pr <- 1 / (1 + exp(-Z)) # inv logit function
#' Y <- rbinom(n, 1, pr)
#' df <- data.frame(cbind(X1, X2, Y))
#'
#' ## formatting the data for jags
#' datjags <- as.list(df)
#' datjags$N <- length(datjags$Y)
#'
#' ## creating jags model
#' model <- function() {
#'
#' for(i in 1:N){
#' Y[i] ~ dbern(p[i]) ## Bernoulli distribution of y_i
#' logit(p[i]) <- mu[i] ## Logit link function
#' mu[i] <- b[1] +
#' b[2] * X1[i] +
#' b[3] * X2[i]
#' }
#'
#' for(j in 1:3){
#' b[j] ~ dnorm(0, 0.001) ## Use a coefficient vector for simplicity
#' }
#' }
#'
#' params <- c("b")
#' inits1 <- list("b" = rep(0, 3))
#' inits2 <- list("b" = rep(0, 3))
#' inits <- list(inits1, inits2)
#'
#' ## fitting the model with R2jags
#' set.seed(123)
#' fit <- R2jags::jags(data = datjags, inits = inits,
#' parameters.to.save = params, n.chains = 2, n.iter = 2000,
#' n.burnin = 1000, model.file = model)
#'
#' ## generating coefficient plot with all non-auxiliary parameters
#' mcmcCoefPlot(fit)
#' }
#' }
#'
#' \dontshow{setwd(.old_wd)}
#' @export
mcmcCoefPlot <- function(mod, pars = NULL,
pointest = 'mean',
ci = .95,
hpdi = FALSE,
sort = FALSE,
plot = TRUE,
regex = FALSE) {
## pull in unexported functions from other packages
## other options for future versions might include lifting this and adding authors as copr holders
runjags.as.mcmc.list.runjags = getFromNamespace("as.mcmc.list.runjags", "runjags")
if (inherits(mod, what = c("jags", "rjags"))) {
samps <- as.matrix(coda::as.mcmc(mod))
}
if (inherits(mod, what = "bugs")) {
samps <- mod$sims.matrix
}
if (inherits(mod, what = "runjags")) {
samps <- as.matrix(runjags.as.mcmc.list.runjags(mod))
}
if (inherits(mod, what = c("mcmc", "mcmc.list", "stanfit", "stanreg",
"brmsfit"))) {
samps <- as.matrix(mod)
}
if (is.null(pars)) {
samps <- samps[, !grepl(pattern = 'deviance|lp__', x = colnames(samps))]
} else if (regex) {
samps <- samps[, grepl(pattern = paste(pars, collapse = '|'), x = colnames(samps))]
} else {
samps <- matrix(samps[, pars], nrow = nrow(samps), byrow = FALSE,
dimnames = list(NULL, pars))
}
if (hpdi == FALSE) {
samps_ci <- t(apply(samps, 2, quantile, probs = c(.5 - ci/2, .5 + ci/2)))
} else if (hpdi == TRUE) {
samps_ci <- coda::HPDinterval(coda::as.mcmc(samps), prob = ci)
} else {
stop("hpdi must be either true or false")
}
if (pointest == 'mean') {
samps_pe <- apply(samps, 2, mean)
} else if (pointest == 'median') {
samps_pe <- apply(samps, 2, median)
} else {
stop("pointest must be either 'mean' or 'median'")
}
coefs <- data.frame(pe = samps_pe, samps_ci)
if (sort) {
coefs$variable <- factor(rownames(coefs),
levels = rev(rownames(coefs)[order(coefs$pe,
decreasing = TRUE)]))
} else {
coefs$variable <- factor(rownames(coefs), levels = rev(rownames(coefs)))
}
colnames(coefs)[2:3] <- c('lo', 'hi')
## return coefficient plot or underlying dataframe
if (!plot) {
coefs
} else {
ggplot2::ggplot(coefs, ggplot2::aes(x = .data$variable, y = .data$pe,
ymin = .data$lo, ymax = .data$hi)) +
ggplot2::geom_hline(yintercept = 0, lty = 2) +
ggplot2::geom_pointrange() +
ggplot2::coord_flip() +
ggplot2::labs(x = '', y = '')
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.