R/mcmcCoefPlot.R

Defines functions mcmcCoefPlot

Documented in mcmcCoefPlot

#' Coefficient Plots for MCMC Output
#'
#' Coefficient plots for MCMC output using \code{ggplot2}
#'
#' @param mod Bayesian model object generated by R2jags, rjags, R2WinBUGS, R2OpenBUGS, 
#' MCMCpack, rstan, rstanarm, and brms.
#' @param pars a scalar or vector of the parameters you wish to include in the table.
#' By default, \code{mcmcCoefPlot} includes all parameters saved in a model object. If a
#' model has lots of samples and lots of saved parameters, not explicitly specifying
#' a limited number of parameters to include via \code{pars} may take a long time
#' or produce an unreadable plot. \code{pars} can either be a vector with the
#' specific parameters to be included in the table e.g. \code{pars = c("beta[1]",
#' "beta[2]", "beta[3]")}, or they can be partial names that will be matched using
#' regular expressions e.g. \code{pars = "beta"} if \code{regex = TRUE}. Both of
#' these will include \code{beta[1]}, \code{beta[2]}, and \code{beta[3]} in the
#' plot. If \code{pars} is left blank, \code{mcmcCoefPlot} will exclude auxiliary
#' parameters such as \code{deviance} from JAGS or \code{lp__} from Stan.
#' @param pointest a character indicating whether to use the mean or median for
#' point estimates in the table.
#' @param ci a scalar indicating the confidence level of the uncertainty intervals.
#' @param hpdi a logical indicating whether to use highest posterior density intervals
#' or equal tailed credible intervals to capture uncertainty; default \code{FALSE}.
#' @param sort logical indicating whether to sort the point estimates to produce
#' a caterpillar or dot plot; default \code{FALSE}.
#' @param plot logical indicating whether to return a \code{ggplot} object or the
#' underlying tidy DataFrame; default \code{TRUE}.
#' @param regex use regular expression matching with \code{pars}?
#'
#' @return a \code{ggplot} object or a tidy DataFrame.
#' 
#' @author Rob Williams, \email{jayrobwilliams@gmail.com}
#'
#' @examples
#' \dontshow{.old_wd <- setwd(tempdir())}
#' \donttest{
#' if (interactive()) {
#' ## simulating data
#' set.seed(123456)
#' b0 <- 0.2 # true value for the intercept
#' b1 <- 0.5 # true value for first beta
#' b2 <- 0.7 # true value for second beta
#' n <- 500 # sample size
#' X1 <- runif(n, -1, 1)
#' X2 <- runif(n, -1, 1)
#' Z <- b0 + b1 * X1 + b2 * X2
#' pr <- 1 / (1 + exp(-Z)) # inv logit function
#' Y <- rbinom(n, 1, pr)
#' df <- data.frame(cbind(X1, X2, Y))
#' 
#' ## formatting the data for jags
#' datjags <- as.list(df)
#' datjags$N <- length(datjags$Y)
#' 
#' ## creating jags model
#' model <- function()  {
#'   
#'   for(i in 1:N){
#'     Y[i] ~ dbern(p[i])  ## Bernoulli distribution of y_i
#'     logit(p[i]) <- mu[i]    ## Logit link function
#'     mu[i] <- b[1] +
#'       b[2] * X1[i] +
#'       b[3] * X2[i]
#'   }
#'   
#'   for(j in 1:3){
#'     b[j] ~ dnorm(0, 0.001) ## Use a coefficient vector for simplicity
#'   }
#' }
#' 
#' params <- c("b")
#' inits1 <- list("b" = rep(0, 3))
#' inits2 <- list("b" = rep(0, 3))
#' inits <- list(inits1, inits2)
#' 
#' ## fitting the model with R2jags
#' set.seed(123)
#' fit <- R2jags::jags(data = datjags, inits = inits,
#'                     parameters.to.save = params, n.chains = 2, n.iter = 2000,
#'                     n.burnin = 1000, model.file = model)
#' 
#' ## generating coefficient plot with all non-auxiliary parameters
#' mcmcCoefPlot(fit)
#' }
#' }
#' 
#' \dontshow{setwd(.old_wd)}
#' @export
mcmcCoefPlot <- function(mod, pars = NULL, 
                         pointest = 'mean', 
                         ci = .95,
                         hpdi = FALSE, 
                         sort = FALSE, 
                         plot = TRUE,
                         regex = FALSE) {
  
  ## pull in unexported functions from other packages
  ## other options for future versions might include lifting this and adding authors as copr holders
  runjags.as.mcmc.list.runjags = getFromNamespace("as.mcmc.list.runjags", "runjags")
  if (inherits(mod, what = c("jags", "rjags"))) {
    samps <- as.matrix(coda::as.mcmc(mod))
  }
  if (inherits(mod, what = "bugs")) {
    samps <- mod$sims.matrix
  }
  if (inherits(mod, what = "runjags")) {
    samps <- as.matrix(runjags.as.mcmc.list.runjags(mod))
  }
  if (inherits(mod, what = c("mcmc", "mcmc.list", "stanfit", "stanreg",
                              "brmsfit"))) {
    samps <- as.matrix(mod)
  }
  
  if (is.null(pars)) {
    samps <- samps[, !grepl(pattern = 'deviance|lp__', x = colnames(samps))]
  } else if (regex) {
    samps <- samps[, grepl(pattern = paste(pars, collapse = '|'), x = colnames(samps))]
  } else {
    samps <- matrix(samps[, pars], nrow = nrow(samps), byrow = FALSE,
                  dimnames = list(NULL, pars))
  }

  if (hpdi == FALSE) {
    samps_ci <- t(apply(samps, 2, quantile, probs = c(.5 - ci/2, .5 + ci/2)))
  } else if (hpdi == TRUE) {
    samps_ci <- coda::HPDinterval(coda::as.mcmc(samps), prob = ci)
  } else {
    stop("hpdi must be either true or false")
  }
  
  if (pointest == 'mean') {
    samps_pe <- apply(samps, 2, mean)
  } else if (pointest == 'median') {
    samps_pe <- apply(samps, 2, median)
  } else {
    stop("pointest must be either 'mean' or 'median'")
  }
  
  coefs <- data.frame(pe = samps_pe, samps_ci)
  if (sort) {
    coefs$variable <- factor(rownames(coefs),
                             levels = rev(rownames(coefs)[order(coefs$pe,
                                                                decreasing = TRUE)])) 
  } else {
    coefs$variable <- factor(rownames(coefs), levels = rev(rownames(coefs)))
  }
  colnames(coefs)[2:3] <- c('lo', 'hi')
  
  ## return coefficient plot or underlying dataframe
  if (!plot) {
    coefs
  } else {
    ggplot2::ggplot(coefs, ggplot2::aes(x = .data$variable, y = .data$pe,
                                        ymin = .data$lo, ymax = .data$hi)) +
      ggplot2::geom_hline(yintercept = 0, lty = 2) +
      ggplot2::geom_pointrange() +
      ggplot2::coord_flip() +
      ggplot2::labs(x = '', y = '')
  }
  
}
ShanaScogin/BayesPostEst documentation built on May 20, 2022, 6:36 p.m.