#'This function calculates predicted probabilities for
#'"observed" cases after a Bayesian logit or probit model
#'following Hanmer and Kalkan (2013, American Journal of
#'Political Science 57(1): 263-277)
#'@title Predicted Probabilities using Bayesian MCMC estimates for the Average of Observed Cases
#'@description Implements R function to calculate the predicted probabilities
#'for "observed" cases after a Bayesian logit or probit model, following
#'Hanmer & Kalkan (2013) (2013, American Journal of Political Science 57(1): 263-277).
#'@param modelmatrix model matrix, including intercept (if the intercept is among the
#'parameters estimated in the model). Create with model.matrix(formula, data).
#'Note: the order of columns in the model matrix must correspond to the order of columns
#'in the matrix of posterior draws in the \code{mcmcout} argument. See the \code{mcmcout}
#'argument for more.
#'@param mcmcout posterior distributions of all logit coefficients,
#'in matrix form. This can be created from rstan, MCMCpack, R2jags, etc. and transformed
#'into a matrix using the function as.mcmc() from the coda package for \code{jags} class
#'objects, as.matrix() from base R for \code{mcmc}, \code{mcmc.list}, \code{stanreg}, and
#'\code{stanfit} class objects, and \code{object$sims.matrix} for \code{bugs} class objects.
#'Note: the order of columns in this matrix must correspond to the order of columns
#'in the model matrix. One can do this by examining the posterior distribution matrix and sorting the
#'variables in the order of this matrix when creating the model matrix. A useful function for sorting
#'column names containing both characters and numbers as
#'you create the matrix of posterior distributions is \code{mixedsort()} from the gtools package.
#'@param xcol column number of the posterior draws (\code{mcmcout}) and model matrices
#'that corresponds to the explanatory variable for which to calculate associated Pr(y = 1).
#'Note that the columns in these matrices must match.
#'@param xrange name of the vector with the range of relevant values of the
#'explanatory variable for which to calculate associated Pr(y = 1).
#'@param xinterest semi-optional argument. Name of the explanatory variable for which
#'to calculate associated Pr(y = 1). If \code{xcol} is supplied, this is not needed.
#'If both are supplied, the function defaults to \code{xcol} and this argument is ignored.
#'@param link type of generalized linear model; a character vector set to \code{"logit"} (default)
#'or \code{"probit"}.
#'@param ci the bounds of the credible interval. Default is \code{c(0.025, 0.975)} for the 95\%
#'credible interval.
#'@param fullsims logical indicator of whether full object (based on all MCMC draws
#'rather than their average) will be returned. Default is \code{FALSE}. Note: The longer
#'\code{xrange} is, the larger the full output will be if \code{TRUE} is selected.
#'@references Hanmer, Michael J., & Ozan Kalkan, K. (2013). Behind the curve: Clarifying
#'the best approach to calculating predicted probabilities and marginal effects from
#'limited dependent variable models. American Journal of Political Science, 57(1),
#'263-277. https://doi.org/10.1111/j.1540-5907.2012.00602.x
#'@return if \code{fullsims = FALSE} (default), a tibble with 4 columns:
#'\itemize{
#'\item x: value of variable of interest, drawn from \code{xrange}
#'\item median_pp: median predicted Pr(y = 1) when variable of interest is set to x
#'\item lower_pp: lower bound of credible interval of predicted probability at given x
#'\item upper_pp: upper bound of credible interval of predicted probability at given x
#'}
#'if \code{fullsims = TRUE}, a tibble with 3 columns:
#'\itemize{
#'\item Iteration: number of the posterior draw
#'\item x: value of variable of interest, drawn from \code{xrange}
#'\item pp: average predicted Pr(y = 1) of all observed cases when variable of interest is set to x
#'}
#'@examples
#' \dontshow{.old_wd <- setwd(tempdir())}
#' \donttest{
#' if (interactive()) {
#' ## simulating data
#' set.seed(12345)
#' b0 <- 0.2 # true value for the intercept
#' b1 <- 0.5 # true value for first beta
#' b2 <- 0.7 # true value for second beta
#' n <- 500 # sample size
#' X1 <- runif(n, -1, 1)
#' X2 <- runif(n, -1, 1)
#' Z <- b0 + b1 * X1 + b2 * X2
#' pr <- 1 / (1 + exp(-Z)) # inv logit function
#' Y <- rbinom(n, 1, pr)
#' df <- data.frame(cbind(X1, X2, Y))
#'
#' ## formatting the data for jags
#' datjags <- as.list(df)
#' datjags$N <- length(datjags$Y)
#'
#' ## creating jags model
#' model <- function() {
#'
#' for(i in 1:N){
#' Y[i] ~ dbern(p[i]) ## Bernoulli distribution of y_i
#' logit(p[i]) <- mu[i] ## Logit link function
#' mu[i] <- b[1] +
#' b[2] * X1[i] +
#' b[3] * X2[i]
#' }
#'
#' for(j in 1:3){
#' b[j] ~ dnorm(0, 0.001) ## Use a coefficient vector for simplicity
#' }
#'
#'}
#'
#' params <- c("b")
#' inits1 <- list("b" = rep(0, 3))
#' inits2 <- list("b" = rep(0, 3))
#' inits <- list(inits1, inits2)
#'
#' ## fitting the model with R2jags
#' library(R2jags)
#' set.seed(123)
#' fit <- jags(data = datjags, inits = inits,
#' parameters.to.save = params, n.chains = 2, n.iter = 2000,
#' n.burnin = 1000, model.file = model)
#'
#' ### observed value approach
#' library(coda)
#' xmat <- model.matrix(Y ~ X1 + X2, data = df)
#' mcmc <- as.mcmc(fit)
#' mcmc_mat <- as.matrix(mcmc)[, 1:ncol(xmat)]
#' X1_sim <- seq(from = min(datjags$X1),
#' to = max(datjags$X1),
#' length.out = 10)
#' obs_prob <- mcmcObsProb(modelmatrix = xmat,
#' mcmcout = mcmc_mat,
#' xrange = X1_sim,
#' xcol = 2)
#' }
#' }
#'
#' \dontshow{setwd(.old_wd)}
#'@export
#'
mcmcObsProb <- function(modelmatrix,
mcmcout,
xcol,
xrange,
xinterest,
link = "logit",
ci = c(0.025, 0.975),
fullsims = FALSE){
# checking arguments
if(missing(xcol) & missing(xinterest)) {
stop("Please enter a column number or name of your variable of interest)")
}
if(!missing(xcol) & !missing(xinterest)) {
message("Both xcol and xinterest were supplied by user. Function defaults to xcol")
}
if(!missing(xinterest)) {
if(!(xinterest %in% variable.names(modelmatrix)))
stop("Variable name does not match any in the matrix. Please enter another.")
}
X <- matrix(rep(t(modelmatrix), length(xrange)),
ncol = ncol(modelmatrix), byrow = TRUE )
colnames(X) <- variable.names(modelmatrix)
if(!missing(xcol)) {
X[, xcol] <- sort(rep(xrange, times = nrow(X) / length(xrange)))
} else {
X[ , grepl( xinterest , variable.names( X ) ) ] <-
sort(rep(xrange, times = nrow(X) / length(xrange)))
}
if(link == "logit"){
pp <- plogis(t(X %*% t(mcmcout)))
}
if(link == "probit"){
pp <- pnorm(t(X %*% t(mcmcout)))
}
# emptry matrix for PPs
pp_mat <- matrix(NA, nrow = nrow(mcmcout), ncol = length(xrange))
# indices
pp_mat_lowerindex <- 1 + (0:(length(xrange) - 1) * nrow(modelmatrix))
pp_mat_upperindex <- nrow(modelmatrix) + (0:(length(xrange) - 1) *
nrow(modelmatrix))
# fill matrix with PPs, one for each value of the predictor of interest
for(i in 1:length(xrange)){
pp_mat[, i] <- apply(X = pp[,
c(pp_mat_lowerindex[i]:pp_mat_upperindex[i])],
MARGIN = 1, FUN = function(x) mean(x))
}
median_pp <- apply(X = pp_mat, MARGIN = 2, function(x) quantile(x, probs = c(0.5)))
lower_pp <- apply(X = pp_mat, MARGIN = 2, function(x) quantile(x, probs = ci[1]))
upper_pp <- apply(X = pp_mat, MARGIN = 2, function(x) quantile(x, probs = ci[2]))
pp_dat <- dplyr::tibble(x = xrange,
median_pp = median_pp,
lower_pp = lower_pp,
upper_pp = upper_pp)
if(fullsims == FALSE){
return(pp_dat) # pp_dat was created by summarizing longFrame
}
if(fullsims == TRUE){
longFrame <- reshape2::melt(pp_mat, id.vars = .data$Var2)
names(longFrame) <- c("Iteration", "x", "pp")
return(longFrame)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.