euc.dist = function(x1, x2) sqrt(sum((x1 - x2) ^ 2))
silhouette=function(nCluster,clustering.output){
dataPlot=cbind(as.numeric(clustering.output[,3]),as.numeric(clustering.output[,4]))
nCluster=length(unique(clustering.output[,2]))
mainVector=as.numeric(clustering.output[,2])
intraScore=c()
extraScore=c()
neighbor=c()
silhouetteValue=c()
for(k in 1:(length(dataPlot)/2))
{
a=0
count=0
#per ogni altro elemento nel suo cluster
for(j in 1:(length(dataPlot)/2)){
if(mainVector[k]==mainVector[j])
{
if(k != j ){
a=a+euc.dist(dataPlot[k,],dataPlot[j,])
count=count+1
}
}
}
intraScore[k]=a/count
}
extraScoreTemp=c()
extraCountTemp=c()
for(k in 1:(length(dataPlot)/2))
{
for(s in 1:nCluster){
extraScoreTemp[s]=0
extraCountTemp[s]=0
}
for(j in 1:(length(dataPlot)/2))
{
if(mainVector[k] != mainVector[j]){
extraScoreTemp[mainVector[j]]=extraScoreTemp[mainVector[j]]+ euc.dist(dataPlot[k,],dataPlot[j,])
extraCountTemp[mainVector[j]]=extraCountTemp[mainVector[j]]+1
}
}
extraScoreTemp=extraScoreTemp[-mainVector[k]]
extraCountTemp=extraCountTemp[-mainVector[k]]
extraScore[k]=min(extraScoreTemp/extraCountTemp)
minIndex=which.min(extraScoreTemp/extraCountTemp)
if(minIndex>=mainVector[k]){neighbor[k]=minIndex+1}else{neighbor[k]=minIndex}
}
for(u in 1:length(extraScore)){silhouetteValue[u]=(extraScore[u]-intraScore[u])/max(extraScore[u],intraScore[u])}
silhouette=matrix(cbind(extraScore,intraScore,mainVector,neighbor,silhouetteValue),nrow=length(extraScore))
colnames(silhouette) = c("extraScore","intraScore","ClusterBelong","Neighbor","SilhouetteValue") # the first row will be the header
return(cbind(clustering.output,extraScore,intraScore,neighbor,silhouetteValue))
}
clustering=function(matrixName,matrix.h5,positions.csv,n_clusters,pcaDimensions,
nPerm,permAtTime,percent,nCluster){
n_clusters = as.integer(n_clusters)
pcaDimensions = as.integer(pcaDimensions)
countMatrix=read.table(paste("/scratch/",matrixName,sep=""),sep="\t",header=TRUE,row.name=1)
countMatrix <- countMatrix[,sort(colnames(countMatrix))]
pbmc <- CreateSeuratObject(countMatrix)
pbmc <- SCTransform(pbmc, assay = "RNA", verbose = FALSE)
pbmc <- RunPCA(pbmc, assay = "SCT", verbose = FALSE)
pbmc.new <- RunTSNE(object = pbmc)
Coordinates <- pbmc.new@reductions[["tsne"]]@cell.embeddings
#############
my_giotto_object = createGiottoVisiumObject(visium_dir="/scratch", expr_data="filter",
h5_visium_path=paste0("/scratch/",matrix.h5),
h5_tissue_positions_path=paste0("/scratch/",positions.csv))
my_giotto_object <- filterGiotto(gobject = my_giotto_object,
expression_threshold = 1,
gene_det_in_min_cells = 10,
min_det_genes_per_cell = 0)
my_giotto_object <- normalizeGiotto(gobject = my_giotto_object)
my_giotto_object <- calculateHVG(gobject = my_giotto_object)
my_giotto_object <- runPCA(gobject = my_giotto_object,ncp=pcaDimensions,reduction="cells")
# create network (required for binSpect methods)
my_giotto_object = createSpatialNetwork(gobject = my_giotto_object, minimum_k = 2)
# identify genes with a spatial coherent expression profile
km_spatialgenes = binSpect(my_giotto_object, bin_method = 'kmeans')
hmrf_folder = "/scratch/giotto_out"
if(!file.exists(hmrf_folder)) dir.create(hmrf_folder, recursive = T)
# perform hmrf
my_spatial_genes = km_spatialgenes[1:100]$genes
HMRF_spatial_genes = doHMRF(gobject = my_giotto_object,
expression_values = 'scaled',
spatial_genes = my_spatial_genes,
spatial_network_name = 'Delaunay_network',
k = n_clusters,
betas = c(25,1,1),
python_path="/root/miniconda3/bin/python",
output_folder = paste0(hmrf_folder,'/SG_top100_scaled'))
my_giotto_object = addHMRF(gobject = my_giotto_object,
HMRFoutput = HMRF_spatial_genes,
k = n_clusters, betas_to_add = c(25),
hmrf_name = 'HMRF')
png(filename="/scratch/giotto_out/full_giotto.png")
# visualize selected hmrf result
giotto_colors = Giotto:::getDistinctColors(n_clusters)
names(giotto_colors) = 1:n_clusters
spatPlot(gobject = my_giotto_object, cell_color = paste0("HMRF_k",n_clusters,"_b.25"),
point_size = 3, coord_fix_ratio = 1, cell_color_code = giotto_colors)
dev.off()
#############
mainVector = my_giotto_object@cell_metadata[,5]
mainVector = as.numeric(mainVector[[1]])
jumping_clusters = sort(unique(mainVector))
for(i in 1:length(jumping_clusters)){
mainVector[mainVector==jumping_clusters[i]] = i
}
nCluster <- length(unique(mainVector))
dir.create(paste("./",nCluster,sep=""))
dir.create(paste("./",nCluster,"/Permutation",sep=""))
setwd(paste("./",nCluster,sep=""))
clustering.output <- cbind(rownames(Coordinates),mainVector,Coordinates[,1],Coordinates[,2])
clustering.output <- silhouette(length(unique(mainVector)),clustering.output)
colnames(clustering.output) <- c("cellName","Belonging_Cluster","xChoord","yChoord","extraScore","intraScore","neighbor","silhouetteValue")
matrixNameBis = strsplit(matrixName,".",fixed = TRUE)[[1]][1]
write.table(clustering.output,paste(matrixNameBis,"_clustering.output.","txt",sep=""),sep="\t", row.names = F)
cycles <- nPerm/permAtTime
cat(getwd())
for(i in 1:cycles){
system(paste("for X in $(seq ",permAtTime,")
do
nohup Rscript ./../../../home/permutation.R ",percent," ",matrix.h5," ",positions.csv," ",n_clusters," ",pcaDimensions," $(($X +",(i-1)*permAtTime," )) &
done"))
d=1
while(length(list.files("./Permutation",pattern=paste("*.","txt",sep="")))!=i*permAtTime*2){
if(d==1){cat(paste("Cluster number ",nCluster," ",((permAtTime*i))/nPerm*100," % complete \n"))}
d=2
}
system("echo 3 > /proc/sys/vm/drop_caches")
system("sync")
gc()
}
cluster_p <- sapply(list.files("./Permutation/",pattern="cluster*"),FUN=function(x){a=read.table(paste("./Permutation/",x,sep=""),header=TRUE,col.names=1,sep="\t")[[1]]})
killedC <- sapply(list.files("./Permutation/",pattern="killC*"),FUN=function(x){a=read.table(paste("./Permutation/",x,sep=""),header=TRUE,col.names=1,sep="\t")[[1]]})
write.table(as.matrix(cluster_p,col.names=1),paste(matrixNameBis,"_",nCluster,"_clusterP.","txt",sep=""),sep="\t",row.names=FALSE, quote=FALSE)
write.table(as.matrix(killedC,col.names=1),paste(matrixNameBis,"_",nCluster,"_killedCell.","txt",sep=""),sep="\t",row.names=FALSE, quote=FALSE)
pdf("hist.pdf")
clusters <- apply(cluster_p,2,FUN=function(x){max(x)})
hist(clusters,xlab="nCluster",breaks=length(unique(cluster_p)))
dev.off()
write.table(sort(unique(clusters)),paste("./../rangeVector.","txt",sep=""),sep="\t",row.names=FALSE,col.names=FALSE)
system("rm -r Permutation")
return(length(unique(mainVector)))
}
silhouettePlot=function(matrixName,rangeVector,format,separator){
if(separator=="tab"){separator="\t"} #BUG CORRECTION TAB PROBLEM
count=1
l=list()
for(i in rangeVector){
l[[count]]=read.table(paste("./",i,"/",matrixName,"_clustering.output.",format,sep=""),sep=separator,header=TRUE)[,8]
count=count+1
}
pdf(paste(matrixName,"_vioplot.pdf",sep=""))
do.call(vioplot,c(l,list(names=rangeVector)))
dev.off()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.